tf.compat.v1.sparse_split | TensorFlow v2.16.1 (original) (raw)
tf.compat.v1.sparse_split
Stay organized with collections Save and categorize content based on your preferences.
Split a SparseTensor
into num_split
tensors along axis
. (deprecated arguments)
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.sparse_split(
keyword_required=KeywordRequired(),
sp_input=None,
num_split=None,
axis=None,
name=None,
split_dim=None
)
If the sp_input.dense_shape[axis]
is not an integer multiple of num_split
each slice starting from 0:shape[axis] % num_split
gets extra one dimension. For example, if axis = 1
and num_split = 2
and the input is:
input_tensor = shape = [2, 7]
[ a d e ]
[b c ]
Graphically the output tensors are:
output_tensor[0] =
[ a ]
[b c ]
output_tensor[1] =
[ d e ]
[ ]
Args | |
---|---|
keyword_required | Python 2 standin for * (temporary for argument reorder) |
sp_input | The SparseTensor to split. |
num_split | A Python integer. The number of ways to split. |
axis | A 0-D int32 Tensor. The dimension along which to split. Must be in range [-rank, rank), where rank is the number of dimensions in the inputSparseTensor. |
name | A name for the operation (optional). |
split_dim | Deprecated old name for axis. |
Returns |
---|
num_split SparseTensor objects resulting from splitting value. |
Raises | |
---|---|
TypeError | If sp_input is not a SparseTensor. |
ValueError | If the deprecated split_dim and axis are both non None. |