tf.compat.v1.zeros_initializer | TensorFlow v2.16.1 (original) (raw)
tf.compat.v1.zeros_initializer
Stay organized with collections Save and categorize content based on your preferences.
Initializer that generates tensors initialized to 0.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.initializers.zeros
tf.compat.v1.zeros_initializer(
dtype=tf.dtypes.float32
)
Migrate to TF2
tf.compat.v1.zeros_initializer is compatible with eager execution and tf.function.
To migrate to TF2, please use tf.zeros_initializer instead. The dtype
argument in tf.compat.v1.zeros_initializer._ init_() does not exist intf.zeros_initializer._ init_(). However, you can specify the dtype
in__call__()
in both cases.
Structural Mapping to TF2
Before:
initializer = tf.compat.v1.zeros_initializer(dtype=tf.float32)
variable = tf.Variable(initializer(shape=[3, 3]))
After:
initializer = tf.zeros_initializer()
variable = tf.Variable(initializer(shape=[3, 3], dtype=tf.float32))
How to Map Arguments
TF1 Arg Name | TF2 Arg Name | Note |
---|---|---|
dtype | dtype | In __call__() method |
partition_info | - | (__call__ arg in TF1) Not supported |
Before & After Usage Example
Before:
initializer = tf.compat.v1.zeros_initializer(dtype=tf.float32)
tf.Variable(initializer(shape=[3])).numpy()
array([0., 0., 0.], dtype=float32)
tf.Variable(initializer(shape=[3, 3])).numpy()
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
initializer = tf.compat.v1.zeros_initializer()
tf.Variable(initializer(shape=[3], dtype=tf.float32)).numpy()
array([0., 0., 0.], dtype=float32)
tf.Variable(initializer(shape=[3, 3], dtype=tf.float32)).numpy()
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
After:
initializer = tf.zeros_initializer()
tf.Variable(initializer(shape=[3], dtype=tf.float32)).numpy()
array([0., 0., 0.], dtype=float32)
tf.Variable(initializer(shape=[3, 3], dtype=tf.float32)).numpy()
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
Description
Used in the notebooks
Used in the guide |
---|
Migrating model checkpoints |
Methods
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config | A Python dictionary. It will typically be the output ofget_config. |
Returns |
---|
An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns |
---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. If not provided use the initializer dtype. |
partition_info | Optional information about the possible partitioning of a tensor. |