tf.data.experimental.AutotuneOptions  |  TensorFlow v2.16.1 (original) (raw)

tf.data.experimental.AutotuneOptions

Stay organized with collections Save and categorize content based on your preferences.

Represents options for autotuning dataset performance.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.data.experimental.AutotuneOptions

tf.data.experimental.AutotuneOptions()
options = tf.data.Options()
options.autotune.enabled = False
dataset = dataset.with_options(options)
Attributes
autotune_algorithm When autotuning is enabled (through autotune), determines the algorithm to use.
cpu_budget When autotuning is enabled (through autotune), determines the CPU budget to use. Values greater than the number of schedulable CPU cores are allowed but may result in CPU contention. If None, defaults to the number of schedulable CPU cores.
enabled Whether to automatically tune performance knobs. If None, defaults to True.
ram_budget When autotuning is enabled (through autotune), determines the RAM budget to use. Values greater than the available RAM in bytes may result in OOM. If None, defaults to half of the available RAM in bytes.

Methods

__eq__

View source

__eq__(
    other
)

Return self==value.

__ne__

View source

__ne__(
    other
)

Return self!=value.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-04-26 UTC.