tf.data.experimental.DatasetInitializer | TensorFlow v2.16.1 (original) (raw)
tf.data.experimental.DatasetInitializer
Stay organized with collections Save and categorize content based on your preferences.
Creates a table initializer from a tf.data.Dataset.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.data.experimental.DatasetInitializer
tf.data.experimental.DatasetInitializer(
dataset
)
Sample usage:
keys = tf.data.Dataset.range(100)
values = tf.data.Dataset.range(100).map(
lambda x: tf.strings.as_string(x * 2))
ds = tf.data.Dataset.zip((keys, values))
init = tf.data.experimental.DatasetInitializer(ds)
table = tf.lookup.StaticHashTable(init, "")
table.lookup(tf.constant([0, 1, 2], dtype=tf.int64)).numpy()
array([b'0', b'2', b'4'], dtype=object)
Raises: ValueError if dataset
doesn't conform to specifications.
Args | |
---|---|
dataset | A tf.data.Dataset object that produces tuples of scalars. The first scalar is treated as a key and the second as value. |
Attributes | |
---|---|
dataset | A tf.data.Dataset object that produces tuples of scalars. The first scalar is treated as a key and the second as value. |
key_dtype | The expected table key dtype. |
value_dtype | The expected table value dtype. |
Methods
initialize
initialize(
table
)
Returns the table initialization op.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.