tf.data.experimental.assert_cardinality  |  TensorFlow v2.16.1 (original) (raw)

tf.data.experimental.assert_cardinality

Stay organized with collections Save and categorize content based on your preferences.

Asserts the cardinality of the input dataset.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.data.experimental.assert_cardinality

tf.data.experimental.assert_cardinality(
    expected_cardinality
)

Used in the notebooks

Used in the tutorials
Fine tuning models for plant disease detection

dataset = tf.data.TFRecordDataset("examples.tfrecord") cardinality = tf.data.experimental.cardinality(dataset) print((cardinality == tf.data.experimental.UNKNOWN_CARDINALITY).numpy()) True dataset = dataset.apply(tf.data.experimental.assert_cardinality(42)) print(tf.data.experimental.cardinality(dataset).numpy()) 42

Args
expected_cardinality The expected cardinality of the input dataset.
Returns
A Dataset transformation function, which can be passed totf.data.Dataset.apply.
Raises
FailedPreconditionError The assertion is checked at runtime (when iterating the dataset) and an error is raised if the actual and expected cardinality differ.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-04-26 UTC.