tf.data.experimental.assert_cardinality | TensorFlow v2.16.1 (original) (raw)
tf.data.experimental.assert_cardinality
Stay organized with collections Save and categorize content based on your preferences.
Asserts the cardinality of the input dataset.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.data.experimental.assert_cardinality
tf.data.experimental.assert_cardinality(
expected_cardinality
)
Used in the notebooks
Used in the tutorials |
---|
Fine tuning models for plant disease detection |
dataset = tf.data.TFRecordDataset("examples.tfrecord")
cardinality = tf.data.experimental.cardinality(dataset)
print((cardinality == tf.data.experimental.UNKNOWN_CARDINALITY).numpy())
True
dataset = dataset.apply(tf.data.experimental.assert_cardinality(42))
print(tf.data.experimental.cardinality(dataset).numpy())
42
Args | |
---|---|
expected_cardinality | The expected cardinality of the input dataset. |
Returns |
---|
A Dataset transformation function, which can be passed totf.data.Dataset.apply. |
Raises | |
---|---|
FailedPreconditionError | The assertion is checked at runtime (when iterating the dataset) and an error is raised if the actual and expected cardinality differ. |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.