tf.data.experimental.table_from_dataset  |  TensorFlow v2.16.1 (original) (raw)

tf.data.experimental.table_from_dataset

Stay organized with collections Save and categorize content based on your preferences.

Returns a lookup table based on the given dataset.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.data.experimental.table_from_dataset

tf.data.experimental.table_from_dataset(
    dataset=None,
    num_oov_buckets=0,
    vocab_size=None,
    default_value=None,
    hasher_spec=lookup_ops.FastHashSpec,
    key_dtype=tf.dtypes.string,
    name=None
)

This operation constructs a lookup table based on the given dataset of pairs of (key, value).

Any lookup of an out-of-vocabulary token will return a bucket ID based on its hash if num_oov_buckets is greater than zero. Otherwise it is assigned thedefault_value. The bucket ID range is[vocabulary size, vocabulary size + num_oov_buckets - 1].

Sample Usages:

keys = tf.data.Dataset.range(100) values = tf.data.Dataset.range(100).map( lambda x: tf.strings.as_string(x * 2)) ds = tf.data.Dataset.zip((keys, values)) table = tf.data.experimental.table_from_dataset( ds, default_value='n/a', key_dtype=tf.int64) table.lookup(tf.constant([0, 1, 2], dtype=tf.int64)).numpy() array([b'0', b'2', b'4'], dtype=object)

Args
dataset A dataset containing (key, value) pairs.
num_oov_buckets The number of out-of-vocabulary buckets.
vocab_size Number of the elements in the vocabulary, if known.
default_value The value to use for out-of-vocabulary feature values. Defaults to -1.
hasher_spec A HasherSpec to specify the hash function to use for assignation of out-of-vocabulary buckets.
key_dtype The key data type.
name A name for this op (optional).
Returns
The lookup table based on the given dataset.
Raises
ValueError If dataset does not contain pairs The 2nd item in the dataset pairs has a dtype which is incompatible with default_value num_oov_buckets is negative vocab_size is not greater than zero The key_dtype is not integer or string