tf.feature_column.indicator_column | TensorFlow v2.16.1 (original) (raw)
tf.feature_column.indicator_column
Stay organized with collections Save and categorize content based on your preferences.
Represents multi-hot representation of given categorical column. (deprecated)
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.feature_column.indicator_column
tf.feature_column.indicator_column(
categorical_column
)
Used in the notebooks
- For DNN model,
indicator_column
can be used to wrap anycategorical_column_*
(e.g., to feed to DNN). Consider to Useembedding_column
if the number of buckets/unique(values) are large. - For Wide (aka linear) model,
indicator_column
is the internal representation for categorical column when passing categorical column directly (as any element in feature_columns) tolinear_model
. Seelinear_model
for details.
name = indicator_column(categorical_column_with_vocabulary_list(
'name', ['bob', 'george', 'wanda']))
columns = [name, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"]
dense_tensor == [[1, 0, 1]] # If "name" bytes_list is ["bob", "wanda"]
dense_tensor == [[2, 0, 0]] # If "name" bytes_list is ["bob", "bob"]
Args | |
---|---|
categorical_column | A CategoricalColumn which is created bycategorical_column_with_* or crossed_column functions. |
Returns |
---|
An IndicatorColumn. |
Raises | |
---|---|
ValueError | If categorical_column is not CategoricalColumn type. |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.