tf.feature_column.sequence_numeric_column  |  TensorFlow v2.16.1 (original) (raw)

tf.feature_column.sequence_numeric_column

Stay organized with collections Save and categorize content based on your preferences.

Returns a feature column that represents sequences of numeric data. (deprecated)

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.feature_column.sequence_numeric_column

tf.feature_column.sequence_numeric_column(
    key,
    shape=(1,),
    default_value=0.0,
    dtype=tf.dtypes.float32,
    normalizer_fn=None
)

Example:

temperature = sequence_numeric_column('temperature')
columns = [temperature]

features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)

rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)
rnn_layer = tf.keras.layers.RNN(rnn_cell)
outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)
Args
key A unique string identifying the input features.
shape The shape of the input data per sequence id. E.g. if shape=(2,), each example must contain 2 * sequence_length values.
default_value A single value compatible with dtype that is used for padding the sparse data into a dense Tensor.
dtype The type of values.
normalizer_fn If not None, a function that can be used to normalize the value of the tensor after default_value is applied for parsing. Normalizer function takes the input Tensor as its argument, and returns the output Tensor. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations.
Returns
A SequenceNumericColumn.
Raises
TypeError if any dimension in shape is not an int.
ValueError if any dimension in shape is not a positive integer.
ValueError if dtype is not convertible to tf.float32.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-04-26 UTC.