tf.get_static_value | TensorFlow v2.16.1 (original) (raw)
tf.get_static_value
Stay organized with collections Save and categorize content based on your preferences.
Returns the constant value of the given tensor, if efficiently calculable.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.get_static_value(
tensor, partial=False
)
Used in the notebooks
Used in the tutorials |
---|
Bayesian Modeling with Joint Distribution |
This function attempts to partially evaluate the given tensor, and returns its value as a numpy ndarray if this succeeds.
Example usage:
a = tf.constant(10)
tf.get_static_value(a)
10
b = tf.constant(20)
tf.get_static_value(tf.add(a, b))
30
# `tf.Variable` is not supported.
c = tf.Variable(30)
print(tf.get_static_value(c))
None
Using partial
option is most relevant when calling get_static_value
inside a tf.function. Setting it to True
will return the results but for the values that cannot be evaluated will be None
. For example:
class Foo:
def __init__(self):
self.a = tf.Variable(1)
self.b = tf.constant(2)
@tf.function
def bar(self, partial):
packed = tf.raw_ops.Pack(values=[self.a, self.b])
static_val = tf.get_static_value(packed, partial=partial)
tf.print(static_val)
f = Foo()
f.bar(partial=True) # `array([None, array(2, dtype=int32)], dtype=object)`
f.bar(partial=False) # `None`
Compatibility(V1): If constant_value(tensor)
returns a non-None
result, it will no longer be possible to feed a different value for tensor
. This allows the result of this function to influence the graph that is constructed, and permits static shape optimizations.
Args | |
---|---|
tensor | The Tensor to be evaluated. |
partial | If True, the returned numpy array is allowed to have partially evaluated values. Values that can't be evaluated will be None. |
Returns |
---|
A numpy ndarray containing the constant value of the given tensor, or None if it cannot be calculated. |
Raises | |
---|---|
TypeError | if tensor is not an tensor.Tensor. |