tf.histogram_fixed_width_bins  |  TensorFlow v2.16.1 (original) (raw)

tf.histogram_fixed_width_bins

Stay organized with collections Save and categorize content based on your preferences.

Bins the given values for use in a histogram.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.histogram_fixed_width_bins

tf.histogram_fixed_width_bins(
    values,
    value_range,
    nbins=100,
    dtype=tf.dtypes.int32,
    name=None
)

Given the tensor values, this operation returns a rank 1 Tensorrepresenting the indices of a histogram into which each element of values would be binned. The bins are equal width and determined by the arguments value_range and nbins.

Args
values Numeric Tensor.
value_range Shape [2] Tensor of same dtype as values. values <= value_range[0] will be mapped to hist[0], values >= value_range[1] will be mapped to hist[-1].
nbins Scalar int32 Tensor. Number of histogram bins.
dtype dtype for returned histogram.
name A name for this operation (defaults to 'histogram_fixed_width').
Returns
A Tensor holding the indices of the binned values whose shape matchesvalues.
Raises
TypeError If any unsupported dtype is provided.
tf.errors.InvalidArgumentError If value_range does not satisfy value_range[0] < value_range[1].

Examples:

# Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) `` nbins = 5 value_range = [0.0, 5.0] new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15] indices = tf.histogram_fixed_width_bins(new_values, value_range, nbins=5) indices.numpy() array([0, 0, 1, 2, 4, 4], dtype=int32)