tf.image.adjust_saturation | TensorFlow v2.16.1 (original) (raw)
tf.image.adjust_saturation
Stay organized with collections Save and categorize content based on your preferences.
Adjust saturation of RGB images.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.image.adjust_saturation
tf.image.adjust_saturation(
image, saturation_factor, name=None
)
Used in the notebooks
Used in the tutorials |
---|
Data augmentation |
This is a convenience method that converts RGB images to float representation, converts them to HSV, adds an offset to the saturation channel, converts back to RGB and then back to the original data type. If several adjustments are chained it is advisable to minimize the number of redundant conversions.
image
is an RGB image or images. The image saturation is adjusted by converting the images to HSV and multiplying the saturation (S) channel bysaturation_factor
and clipping. The images are then converted back to RGB.
saturation_factor
must be in the interval [0, inf)
.
Usage Example:
x = [[[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]]]
tf.image.adjust_saturation(x, 0.5)
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[ 2. , 2.5, 3. ],
[ 5. , 5.5, 6. ]],
[[ 8. , 8.5, 9. ],
[11. , 11.5, 12. ]]], dtype=float32)>
Args | |
---|---|
image | RGB image or images. The size of the last dimension must be 3. |
saturation_factor | float. Factor to multiply the saturation by. |
name | A name for this operation (optional). |
Returns |
---|
Adjusted image(s), same shape and DType as image. |
Raises | |
---|---|
InvalidArgumentError | input must have 3 channels |