tf.io.decode_raw  |  TensorFlow v2.16.1 (original) (raw)

Convert raw bytes from input tensor into numeric tensors.

tf.io.decode_raw(
    input_bytes, out_type, little_endian=True, fixed_length=None, name=None
)

Used in the notebooks

Used in the guide
Introduction to Tensors

Every component of the input tensor is interpreted as a sequence of bytes. These bytes are then decoded as numbers in the format specified by out_type.

tf.io.decode_raw(tf.constant("1"), tf.uint8) <tf.Tensor: shape=(1,), dtype=uint8, numpy=array([49], dtype=uint8)> tf.io.decode_raw(tf.constant("1,2"), tf.uint8) <tf.Tensor: shape=(3,), dtype=uint8, numpy=array([49, 44, 50], dtype=uint8)>

Note that the rank of the output tensor is always one more than the input one:

tf.io.decode_raw(tf.constant(["1","2"]), tf.uint8).shape TensorShape([2, 1]) tf.io.decode_raw(tf.constant([["1"],["2"]]), tf.uint8).shape TensorShape([2, 1, 1])

This is because each byte in the input is converted to a new value on the output (if output type is uint8 or int8, otherwise chunks of inputs get coverted to a new value):

tf.io.decode_raw(tf.constant("123"), tf.uint8) <tf.Tensor: shape=(3,), dtype=uint8, numpy=array([49, 50, 51], dtype=uint8)> tf.io.decode_raw(tf.constant("1234"), tf.uint8) <tf.Tensor: shape=(4,), dtype=uint8, numpy=array([49, 50, 51, 52], ... # chuncked output tf.io.decode_raw(tf.constant("12"), tf.uint16) <tf.Tensor: shape=(1,), dtype=uint16, numpy=array([12849], dtype=uint16)> tf.io.decode_raw(tf.constant("1234"), tf.uint16) <tf.Tensor: shape=(2,), dtype=uint16, numpy=array([12849, 13363], ... # int64 output tf.io.decode_raw(tf.constant("12345678"), tf.int64) <tf.Tensor: ... numpy=array([4050765991979987505])> tf.io.decode_raw(tf.constant("1234567887654321"), tf.int64) <tf.Tensor: ... numpy=array([4050765991979987505, 3544952156018063160])>

The operation allows specifying endianness via the little_endian parameter.

tf.io.decode_raw(tf.constant("\x0a\x0b"), tf.int16) <tf.Tensor: shape=(1,), dtype=int16, numpy=array([2826], dtype=int16)> hex(2826) '0xb0a' tf.io.decode_raw(tf.constant("\x0a\x0b"), tf.int16, little_endian=False) <tf.Tensor: shape=(1,), dtype=int16, numpy=array([2571], dtype=int16)> hex(2571) '0xa0b'

If the elements of input_bytes are of different length, you must specifyfixed_length:

tf.io.decode_raw(tf.constant([["1"],["23"]]), tf.uint8, fixed_length=4) <tf.Tensor: shape=(2, 1, 4), dtype=uint8, numpy= array([[[49, 0, 0, 0]], [[50, 51, 0, 0]]], dtype=uint8)>

If the fixed_length value is larger that the length of the out_type dtype, multiple values are generated:

tf.io.decode_raw(tf.constant(["1212"]), tf.uint16, fixed_length=4) <tf.Tensor: shape=(1, 2), dtype=uint16, numpy=array([[12849, 12849]], ...

If the input value is larger than fixed_length, it is truncated:

x=''.join([chr(1), chr(2), chr(3), chr(4)]) tf.io.decode_raw(x, tf.uint16, fixed_length=2) <tf.Tensor: shape=(1,), dtype=uint16, numpy=array([513], dtype=uint16)> hex(513) '0x201'

If little_endian and fixed_length are specified, truncation to the fixed length occurs before endianness conversion:

x=''.join([chr(1), chr(2), chr(3), chr(4)]) tf.io.decode_raw(x, tf.uint16, fixed_length=2, little_endian=False) <tf.Tensor: shape=(1,), dtype=uint16, numpy=array([258], dtype=uint16)> hex(258) '0x102'

If input values all have the same length, then specifying fixed_lengthequal to the size of the strings should not change output:

x = ["12345678", "87654321"] tf.io.decode_raw(x, tf.int16) <tf.Tensor: shape=(2, 4), dtype=int16, numpy= array([[12849, 13363, 13877, 14391], [14136, 13622, 13108, 12594]], dtype=int16)> tf.io.decode_raw(x, tf.int16, fixed_length=len(x[0])) <tf.Tensor: shape=(2, 4), dtype=int16, numpy= array([[12849, 13363, 13877, 14391], [14136, 13622, 13108, 12594]], dtype=int16)>

Args
input_bytes Each element of the input Tensor is converted to an array of bytes.Currently, this must be a tensor of strings (bytes), although semantically the operation should support any input.
out_type DType of the output. Acceptable types are half, float, double,int32, uint16, uint8, int16, int8, int64.
little_endian Whether the input_bytes data is in little-endian format. Data will be converted into host byte order if necessary.
fixed_length If set, the first fixed_length bytes of each element will be converted. Data will be zero-padded or truncated to the specified length.fixed_length must be a multiple of the size of out_type. fixed_length must be specified if the elements of input_bytes are of variable length.
name A name for the operation (optional).
Returns
A Tensor object storing the decoded bytes.