tf.keras.StatelessScope  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.StatelessScope

Stay organized with collections Save and categorize content based on your preferences.

Scope to prevent any update to Keras Variables.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.keras.StatelessScope

tf.keras.StatelessScope(
    state_mapping=None, collect_losses=False, initialize_variables=True
)

The values of variables to be used inside the scope should be passed via the state_mapping argument, a list of tuples (k, v) where k is a KerasVariableand v is the intended value for this variable (a backend tensor).

Updated values can be collected on scope exit viavalue = scope.get_current_value(variable). No updates will be applied in-place to any variables for the duration of the scope.

Example:

state_mapping = [(k, ops.ones(k.shape, k.dtype)) for k in model.weights]
with keras.StatelessScope(state_mapping) as scope:
    outputs = model.some_function(inputs)

# All model variables remain unchanged. Their new values can be
# collected via:
for k in model.weights:
    new_value = scope.get_current_value(k)
    print(f"New value for {k}: {new_value})

Methods

add_loss

View source

add_loss(
    loss
)

add_update

View source

add_update(
    update
)

get_current_value

View source

get_current_value(
    variable
)

__enter__

View source

__enter__()

__exit__

View source

__exit__(
    *args, **kwargs
)