tf.keras.StatelessScope | TensorFlow v2.16.1 (original) (raw)
tf.keras.StatelessScope
Stay organized with collections Save and categorize content based on your preferences.
Scope to prevent any update to Keras Variables.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.keras.StatelessScope
tf.keras.StatelessScope(
state_mapping=None, collect_losses=False, initialize_variables=True
)
The values of variables to be used inside the scope should be passed via the state_mapping
argument, a list of tuples (k, v)
where k
is a KerasVariable
and v
is the intended value for this variable (a backend tensor).
Updated values can be collected on scope exit viavalue = scope.get_current_value(variable)
. No updates will be applied in-place to any variables for the duration of the scope.
Example:
state_mapping = [(k, ops.ones(k.shape, k.dtype)) for k in model.weights]
with keras.StatelessScope(state_mapping) as scope:
outputs = model.some_function(inputs)
# All model variables remain unchanged. Their new values can be
# collected via:
for k in model.weights:
new_value = scope.get_current_value(k)
print(f"New value for {k}: {new_value})
Methods
add_loss
add_loss(
loss
)
add_update
add_update(
update
)
get_current_value
get_current_value(
variable
)
__enter__
__enter__()
__exit__
__exit__(
*args, **kwargs
)