tf.keras.initializers.GlorotUniform | TensorFlow v2.16.1 (original) (raw)
tf.keras.initializers.GlorotUniform
Stay organized with collections Save and categorize content based on your preferences.
The Glorot uniform initializer, also called Xavier uniform initializer.
Inherits From: VarianceScaling, Initializer
View aliases
Main aliases
tf.keras.initializers.glorot_uniform
tf.keras.initializers.GlorotUniform(
seed=None
)
Used in the notebooks
Used in the tutorials |
---|
Scalable model compression |
Draws samples from a uniform distribution within [-limit, limit]
, wherelimit = sqrt(6 / (fan_in + fan_out))
(fan_in
is the number of input units in the weight tensor and fan_out
is the number of output units).
Examples:
# Standalone usage:
initializer = GlorotUniform()
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = GlorotUniform()
layer = Dense(3, kernel_initializer=initializer)
Args | |
---|---|
seed | A Python integer or instance ofkeras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator. |
Reference:
Methods
clone
clone()
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config | A Python dictionary, the output of get_config(). |
Returns |
---|
An Initializer instance. |
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
Returns |
---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. |