tf.keras.initializers.Zeros  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.initializers.Zeros

Stay organized with collections Save and categorize content based on your preferences.

Initializer that generates tensors initialized to 0.

Inherits From: Initializer

View aliases

Main aliases

tf.keras.initializers.zeros

Used in the notebooks

Used in the tutorials
Scalable model compression

Examples:

# Standalone usage: initializer = Zeros() values = initializer(shape=(2, 2))

# Usage in a Keras layer: initializer = Zeros() layer = Dense(units=3, kernel_initializer=initializer)

Methods

clone

View source

clone()

from_config

View source

@classmethod from_config( config )

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args
config A Python dictionary, the output of get_config().
Returns
An Initializer instance.

get_config

View source

get_config()

Returns the initializer's configuration as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

__call__(
    shape, dtype=None
)

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, keras.backend.floatx()is used, which default to float32 unless you configured it otherwise (via keras.backend.set_floatx(float_dtype)).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-06-07 UTC.