tf.keras.initializers.Zeros | TensorFlow v2.16.1 (original) (raw)
tf.keras.initializers.Zeros
Stay organized with collections Save and categorize content based on your preferences.
Initializer that generates tensors initialized to 0.
Inherits From: Initializer
View aliases
Main aliases
Used in the notebooks
Used in the tutorials |
---|
Scalable model compression |
Examples:
# Standalone usage:
initializer = Zeros()
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = Zeros()
layer = Dense(units=3, kernel_initializer=initializer)
Methods
clone
clone()
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config | A Python dictionary, the output of get_config(). |
Returns |
---|
An Initializer instance. |
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
Returns |
---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, keras.backend.floatx()is used, which default to float32 unless you configured it otherwise (via keras.backend.set_floatx(float_dtype)). |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.