tf.keras.layers.MaxPool1D | TensorFlow v2.16.1 (original) (raw)
tf.keras.layers.MaxPool1D
Stay organized with collections Save and categorize content based on your preferences.
Max pooling operation for 1D temporal data.
Inherits From: Layer, Operation
View aliases
Main aliases
tf.keras.layers.MaxPool1D(
pool_size=2,
strides=None,
padding='valid',
data_format=None,
name=None,
**kwargs
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Using Counterfactual Logit Pairing with Keras | Wiki Talk Comments Toxicity Prediction |
Downsamples the input representation by taking the maximum value over a spatial window of size pool_size
. The window is shifted by strides
.
The resulting output when using the "valid"
padding option has a shape of:output_shape = (input_shape - pool_size + 1) / strides)
.
The resulting output shape when using the "same"
padding option is:output_shape = input_shape / strides
Args | |
---|---|
pool_size | int, size of the max pooling window. |
strides | int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to pool_size. |
padding | string, either "valid" or "same" (case-insensitive)."valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |
data_format | string, either "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last"corresponds to inputs with shape (batch, steps, features)while "channels_first" corresponds to inputs with shape(batch, features, steps). It defaults to the image_data_formatvalue found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last". |
Input shape:
- If
data_format="channels_last"
: 3D tensor with shape(batch_size, steps, features)
. - If
data_format="channels_first"
: 3D tensor with shape(batch_size, features, steps)
.
Output shape:
- If
data_format="channels_last"
: 3D tensor with shape(batch_size, downsampled_steps, features)
. - If
data_format="channels_first"
: 3D tensor with shape(batch_size, features, downsampled_steps)
.
Examples:
strides=1
and padding="valid"
:
x = np.array([1., 2., 3., 4., 5.])
x = np.reshape(x, [1, 5, 1])
max_pool_1d = keras.layers.MaxPooling1D(pool_size=2,
strides=1, padding="valid")
max_pool_1d(x)
strides=2
and padding="valid"
:
x = np.array([1., 2., 3., 4., 5.])
x = np.reshape(x, [1, 5, 1])
max_pool_1d = keras.layers.MaxPooling1D(pool_size=2,
strides=2, padding="valid")
max_pool_1d(x)
strides=1
and padding="same"
:
x = np.array([1., 2., 3., 4., 5.])
x = np.reshape(x, [1, 5, 1])
max_pool_1d = keras.layers.MaxPooling1D(pool_size=2,
strides=1, padding="same")
max_pool_1d(x)
Attributes | |
---|---|
input | Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
output | Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config | A Python dictionary, typically the output of get_config. |
Returns |
---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)