tf.keras.layers.MaxPool1D  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.layers.MaxPool1D

Stay organized with collections Save and categorize content based on your preferences.

Max pooling operation for 1D temporal data.

Inherits From: Layer, Operation

View aliases

Main aliases

tf.keras.layers.MaxPooling1D

tf.keras.layers.MaxPool1D(
    pool_size=2,
    strides=None,
    padding='valid',
    data_format=None,
    name=None,
    **kwargs
)

Used in the notebooks

Used in the guide Used in the tutorials
Using Counterfactual Logit Pairing with Keras Wiki Talk Comments Toxicity Prediction

Downsamples the input representation by taking the maximum value over a spatial window of size pool_size. The window is shifted by strides.

The resulting output when using the "valid" padding option has a shape of:output_shape = (input_shape - pool_size + 1) / strides).

The resulting output shape when using the "same" padding option is:output_shape = input_shape / strides

Args
pool_size int, size of the max pooling window.
strides int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to pool_size.
padding string, either "valid" or "same" (case-insensitive)."valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format string, either "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last"corresponds to inputs with shape (batch, steps, features)while "channels_first" corresponds to inputs with shape(batch, features, steps). It defaults to the image_data_formatvalue found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".

Input shape:

Output shape:

Examples:

strides=1 and padding="valid":

x = np.array([1., 2., 3., 4., 5.]) x = np.reshape(x, [1, 5, 1]) max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, strides=1, padding="valid") max_pool_1d(x)

strides=2 and padding="valid":

x = np.array([1., 2., 3., 4., 5.]) x = np.reshape(x, [1, 5, 1]) max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, strides=2, padding="valid") max_pool_1d(x)

strides=1 and padding="same":

x = np.array([1., 2., 3., 4., 5.]) x = np.reshape(x, [1, 5, 1]) max_pool_1d = keras.layers.MaxPooling1D(pool_size=2, strides=1, padding="same") max_pool_1d(x)

Attributes
input Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called.
output Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called.

Methods

from_config

View source

@classmethod from_config( config )

Creates a layer from its config.

This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).

Args
config A Python dictionary, typically the output of get_config.
Returns
A layer instance.

symbolic_call

View source

symbolic_call(
    *args, **kwargs
)