tf.keras.layers.MaxPool2D | TensorFlow v2.16.1 (original) (raw)
tf.keras.layers.MaxPool2D
Stay organized with collections Save and categorize content based on your preferences.
Max pooling operation for 2D spatial data.
Inherits From: Layer, Operation
View aliases
Main aliases
tf.keras.layers.MaxPool2D(
pool_size=(2, 2),
strides=None,
padding='valid',
data_format=None,
name=None,
**kwargs
)
Used in the notebooks
Downsamples the input along its spatial dimensions (height and width) by taking the maximum value over an input window (of size defined by pool_size
) for each channel of the input. The window is shifted by strides
along each dimension.
The resulting output when using the "valid"
padding option has a spatial shape (number of rows or columns) of:output_shape = math.floor((input_shape - pool_size) / strides) + 1
(when input_shape >= pool_size
)
The resulting output shape when using the "same"
padding option is:output_shape = math.floor((input_shape - 1) / strides) + 1
Args | |
---|---|
pool_size | int or tuple of 2 integers, factors by which to downscale (dim1, dim2). If only one integer is specified, the same window length will be used for all dimensions. |
strides | int or tuple of 2 integers, or None. Strides values. If None, it will default to pool_size. If only one int is specified, the same stride size will be used for all dimensions. |
padding | string, either "valid" or "same" (case-insensitive)."valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |
data_format | string, either "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last"corresponds to inputs with shape (batch, height, width, channels)while "channels_first" corresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_format value found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be"channels_last". |
Input shape:
- If
data_format="channels_last"
: 4D tensor with shape(batch_size, height, width, channels)
. - If
data_format="channels_first"
: 4D tensor with shape(batch_size, channels, height, width)
.
Output shape:
- If
data_format="channels_last"
: 4D tensor with shape(batch_size, pooled_height, pooled_width, channels)
. - If
data_format="channels_first"
: 4D tensor with shape(batch_size, channels, pooled_height, pooled_width)
.
Examples:
strides=(1, 1)
and padding="valid"
:
x = np.array([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]])
x = np.reshape(x, [1, 3, 3, 1])
max_pool_2d = keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(1, 1), padding="valid")
max_pool_2d(x)
strides=(2, 2)
and padding="valid"
:
x = np.array([[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.]])
x = np.reshape(x, [1, 3, 4, 1])
max_pool_2d = keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(2, 2), padding="valid")
max_pool_2d(x)
stride=(1, 1)
and padding="same"
:
x = np.array([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]])
x = np.reshape(x, [1, 3, 3, 1])
max_pool_2d = keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(1, 1), padding="same")
max_pool_2d(x)
Attributes | |
---|---|
input | Retrieves the input tensor(s) of a symbolic operation.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
output | Retrieves the output tensor(s) of a layer.Only returns the tensor(s) corresponding to the _first time_the operation was called. |
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config | A Python dictionary, typically the output of get_config. |
Returns |
---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)