tf.keras.losses.MAPE  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.losses.MAPE

Stay organized with collections Save and categorize content based on your preferences.

Computes the mean absolute percentage error between y_true & y_pred.

View aliases

Main aliases

tf.keras.losses.mape, tf.keras.metrics.MAPE, tf.keras.metrics.mape

tf.keras.losses.MAPE(
    y_true, y_pred
)

Formula:

loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)

Division by zero is prevented by dividing by maximum(y_true, epsilon)where epsilon = keras.backend.epsilon()(default to 1e-7).

Args
y_true Ground truth values with shape = [batch_size, d0, .. dN].
y_pred The predicted values with shape = [batch_size, d0, .. dN].
Returns
Mean absolute percentage error values with shape = [batch_size, d0, .. dN-1].

Example:

y_true = np.random.random(size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = keras.losses.mean_absolute_percentage_error(y_true, y_pred)

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-06-07 UTC.