tf.keras.losses.MSLE  |  TensorFlow v2.16.1 (original) (raw)

tf.keras.losses.MSLE

Stay organized with collections Save and categorize content based on your preferences.

Computes the mean squared logarithmic error between y_true & y_pred.

View aliases

Main aliases

tf.keras.losses.msle, tf.keras.metrics.MSLE, tf.keras.metrics.msle

tf.keras.losses.MSLE(
    y_true, y_pred
)

Formula:

loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)

Note that y_pred and y_true cannot be less or equal to 0. Negative values and 0 values will be replaced with keras.backend.epsilon()(default to 1e-7).

Args
y_true Ground truth values with shape = [batch_size, d0, .. dN].
y_pred The predicted values with shape = [batch_size, d0, .. dN].
Returns
Mean squared logarithmic error values with shape = [batch_size, d0, .. dN-1].

Example:

y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = keras.losses.mean_squared_logarithmic_error(y_true, y_pred)

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-06-07 UTC.