tf.keras.losses.poisson | TensorFlow v2.16.1 (original) (raw)
tf.keras.losses.poisson
Stay organized with collections Save and categorize content based on your preferences.
Computes the Poisson loss between y_true and y_pred.
View aliases
Main aliases
tf.keras.losses.poisson(
y_true, y_pred
)
Formula:
loss = y_pred - y_true * log(y_pred)
Args | |
---|---|
y_true | Ground truth values. shape = [batch_size, d0, .. dN]. |
y_pred | The predicted values. shape = [batch_size, d0, .. dN]. |
Returns |
---|
Poisson loss values with shape = [batch_size, d0, .. dN-1]. |
Example:
y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = keras.losses.poisson(y_true, y_pred)
assert loss.shape == (2,)
y_pred = y_pred + 1e-7
assert np.allclose(
loss, np.mean(y_pred - y_true * np.log(y_pred), axis=-1),
atol=1e-5)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.