tf.keras.utils.img_to_array | TensorFlow v2.16.1 (original) (raw)
tf.keras.utils.img_to_array
Converts a PIL Image instance to a NumPy array.
View aliases
Main aliases
tf.keras.preprocessing.image.img_to_array
tf.keras.utils.img_to_array(
img, data_format=None, dtype=None
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Using the SavedModel format | DeepDream Image classification |
Example:
from PIL import Image
img_data = np.random.random(size=(100, 100, 3))
img = keras.utils.array_to_img(img_data)
array = keras.utils.image.img_to_array(img)
Args | |
---|---|
img | Input PIL Image instance. |
data_format | Image data format, can be either "channels_first" or"channels_last". Defaults to None, in which case the global setting keras.backend.image_data_format() is used (unless you changed it, it defaults to "channels_last"). |
dtype | Dtype to use. None means the global settingkeras.backend.floatx() is used (unless you changed it, it defaults to "float32"). |
Returns |
---|
A 3D NumPy array. |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.