tf.linalg.lu_matrix_inverse | TensorFlow v2.16.1 (original) (raw)
tf.linalg.lu_matrix_inverse
Stay organized with collections Save and categorize content based on your preferences.
Computes the inverse given the LU decomposition(s) of one or more matrices.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.linalg.lu_matrix_inverse
tf.linalg.lu_matrix_inverse(
lower_upper, perm, validate_args=False, name=None
)
This op is conceptually identical to,
inv_X = tf.lu_matrix_inverse(*tf.linalg.lu(X))
tf.assert_near(tf.matrix_inverse(X), inv_X)
# ==> True
Args | |
---|---|
lower_upper | lu as returned by tf.linalg.lu, i.e., if matmul(P, matmul(L, U)) = X then lower_upper = L + U - eye. |
perm | p as returned by tf.linag.lu, i.e., if matmul(P, matmul(L, U)) = X then perm = argmax(P). |
validate_args | Python bool indicating whether arguments should be checked for correctness. Note: this function does not verify the implied matrix is actually invertible, even when validate_args=True. Default value: False (i.e., don't validate arguments). |
name | Python str name given to ops managed by this object. Default value: None (i.e., 'lu_matrix_inverse'). |
Returns | |
---|---|
inv_x | The matrix_inv, i.e.,tf.matrix_inverse(tf.linalg.lu_reconstruct(lu, perm)). |
Examples
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
x = [[[3., 4], [1, 2]],
[[7., 8], [3, 4]]]
inv_x = tf.linalg.lu_matrix_inverse(*tf.linalg.lu(x))
tf.assert_near(tf.matrix_inverse(x), inv_x)
# ==> True