tf.lite.experimental.Analyzer  |  TensorFlow v2.16.1 (original) (raw)

tf.lite.experimental.Analyzer

Stay organized with collections Save and categorize content based on your preferences.

Provides a collection of TFLite model analyzer tools.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.lite.experimental.Analyzer

Used in the notebooks

Used in the guide
TensorFlow Lite Model Analyzer

Example:

model = tf.keras.applications.MobileNetV3Large()
fb_model = tf.lite.TFLiteConverterV2.from_keras_model(model).convert()
tf.lite.experimental.Analyzer.analyze(model_content=fb_model)
# === TFLite ModelAnalyzer ===
#
# Your TFLite model has ‘1’ subgraph(s). In the subgraph description below,
# T# represents the Tensor numbers. For example, in Subgraph#0, the MUL op
# takes tensor #0 and tensor #19 as input and produces tensor #136 as output.
#
# Subgraph#0 main(T#0) -> [T#263]
#   Op#0 MUL(T#0, T#19) -> [T#136]
#   Op#1 ADD(T#136, T#18) -> [T#137]
#   Op#2 CONV_2D(T#137, T#44, T#93) -> [T#138]
#   Op#3 HARD_SWISH(T#138) -> [T#139]
#   Op#4 DEPTHWISE_CONV_2D(T#139, T#94, T#24) -> [T#140]
#   ...

Methods

analyze

View source

@staticmethod analyze( model_path=None, model_content=None, gpu_compatibility=False, **kwargs )

Analyzes the given tflite_model with dumping model structure.

This tool provides a way to understand users' TFLite flatbuffer model by dumping internal graph structure. It also provides additional features like checking GPU delegate compatibility.

Args
model_path TFLite flatbuffer model path.
model_content TFLite flatbuffer model object.
gpu_compatibility Whether to check GPU delegate compatibility.
**kwargs Experimental keyword arguments to analyze API.
Returns
Print analyzed report via console output.