tf.math.betainc | TensorFlow v2.16.1 (original) (raw)
tf.math.betainc
Stay organized with collections Save and categorize content based on your preferences.
Compute the regularized incomplete beta integral \(I_x(a, b)\).
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.betainc, tf.compat.v1.math.betainc
tf.math.betainc(
a: Annotated[Any, tf.raw_ops.Any],
b: Annotated[Any, tf.raw_ops.Any],
x: Annotated[Any, tf.raw_ops.Any],
name=None
) -> Annotated[Any, tf.raw_ops.Any]
The regularized incomplete beta integral is defined as:
\(I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}\)
where
\(B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt\)
is the incomplete beta function and \(B(a, b)\) is the _complete_beta function.
Args | |
---|---|
a | A Tensor. Must be one of the following types: float32, float64. |
b | A Tensor. Must have the same type as a. |
x | A Tensor. Must have the same type as a. |
name | A name for the operation (optional). |
Returns |
---|
A Tensor. Has the same type as a. |