tf.nn.local_response_normalization  |  TensorFlow v2.16.1 (original) (raw)

tf.nn.local_response_normalization

Stay organized with collections Save and categorize content based on your preferences.

Local Response Normalization.

View aliases

Main aliases

tf.nn.lrn

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.nn.local_response_normalization, tf.compat.v1.nn.lrn

tf.nn.local_response_normalization(
    input: Annotated[Any, TV_LRN_T],
    depth_radius: int = 5,
    bias: float = 1,
    alpha: float = 1,
    beta: float = 0.5,
    name=None
) -> Annotated[Any, TV_LRN_T]

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs withindepth_radius. In detail,

sqr_sum[a, b, c, d] =
    sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta

For details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012).

Args
input A Tensor. Must be one of the following types: half, bfloat16, float32. 4-D.
depth_radius An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization window.
bias An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).
alpha An optional float. Defaults to 1. A scale factor, usually positive.
beta An optional float. Defaults to 0.5. An exponent.
name A name for the operation (optional).
Returns
A Tensor. Has the same type as input.