tf.profiler.experimental.ProfilerOptions | TensorFlow v2.16.1 (original) (raw)
tf.profiler.experimental.ProfilerOptions
Options for finer control over the profiler.
tf.profiler.experimental.ProfilerOptions(
host_tracer_level=2,
python_tracer_level=0,
device_tracer_level=1,
delay_ms=None
)
Use tf.profiler.experimental.ProfilerOptions to control tf.profilerbehavior.
Fields | |
---|---|
host_tracer_level | Adjust CPU tracing level. Values are: 1 - critical info only, 2 - info, 3 - verbose. [default value is 2] |
python_tracer_level | Toggle tracing of Python function calls. Values are:1 - enabled, 0 - disabled [default value is 0] |
device_tracer_level | Adjust device (TPU/GPU) tracing level. Values are:1 - enabled, 0 - disabled [default value is 1] |
delay_ms | Requests for all hosts to start profiling at a timestamp that isdelay_ms away from the current time. delay_ms is in milliseconds. If zero, each host will start profiling immediately upon receiving the request. Default value is None, allowing the profiler guess the best value. |
Attributes | |
---|---|
host_tracer_level | A namedtuple alias for field number 0 |
python_tracer_level | A namedtuple alias for field number 1 |
device_tracer_level | A namedtuple alias for field number 2 |
delay_ms | A namedtuple alias for field number 3 |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.