tf.ragged.stack_dynamic_partitions  |  TensorFlow v2.16.1 (original) (raw)

tf.ragged.stack_dynamic_partitions

Stay organized with collections Save and categorize content based on your preferences.

Stacks dynamic partitions of a Tensor or RaggedTensor.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.ragged.stack_dynamic_partitions

tf.ragged.stack_dynamic_partitions(
    data, partitions, num_partitions, name=None
)

Returns a RaggedTensor output with num_partitions rows, where the rowoutput[i] is formed by stacking all slices data[j1...jN] such thatpartitions[j1...jN] = i. Slices of data are stacked in row-major order.

If num_partitions is an int (not a Tensor), then this is equivalent totf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions)).

Example:

data = ['a', 'b', 'c', 'd', 'e'] partitions = [ 3, 0, 2, 2, 3] num_partitions = 5 tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions) <tf.RaggedTensor [[b'b'], [], [b'c', b'd'], [b'a', b'e'], []]>

Args
data A Tensor or RaggedTensor containing the values to stack.
partitions An int32 or int64 Tensor or RaggedTensor specifying the partition that each slice of data should be added to. partitions.shapemust be a prefix of data.shape. Values must be greater than or equal to zero, and less than num_partitions. partitions is not required to be sorted.
num_partitions An int32 or int64 scalar specifying the number of partitions to output. This determines the number of rows in output.
name A name prefix for the returned tensor (optional).
Returns
A RaggedTensor containing the stacked partitions. The returned tensor has the same dtype as data, and its shape is[num_partitions, (D)] + data.shape[partitions.rank:], where (D) is a ragged dimension whose length is the number of data slices stacked for each partition.