tf.ragged.stack_dynamic_partitions | TensorFlow v2.16.1 (original) (raw)
tf.ragged.stack_dynamic_partitions
Stay organized with collections Save and categorize content based on your preferences.
Stacks dynamic partitions of a Tensor or RaggedTensor.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.ragged.stack_dynamic_partitions
tf.ragged.stack_dynamic_partitions(
data, partitions, num_partitions, name=None
)
Returns a RaggedTensor output
with num_partitions
rows, where the rowoutput[i]
is formed by stacking all slices data[j1...jN]
such thatpartitions[j1...jN] = i
. Slices of data
are stacked in row-major order.
If num_partitions
is an int
(not a Tensor
), then this is equivalent totf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions))
.
Example:
data = ['a', 'b', 'c', 'd', 'e']
partitions = [ 3, 0, 2, 2, 3]
num_partitions = 5
tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)
<tf.RaggedTensor [[b'b'], [], [b'c', b'd'], [b'a', b'e'], []]>
Args | |
---|---|
data | A Tensor or RaggedTensor containing the values to stack. |
partitions | An int32 or int64 Tensor or RaggedTensor specifying the partition that each slice of data should be added to. partitions.shapemust be a prefix of data.shape. Values must be greater than or equal to zero, and less than num_partitions. partitions is not required to be sorted. |
num_partitions | An int32 or int64 scalar specifying the number of partitions to output. This determines the number of rows in output. |
name | A name prefix for the returned tensor (optional). |
Returns |
---|
A RaggedTensor containing the stacked partitions. The returned tensor has the same dtype as data, and its shape is[num_partitions, (D)] + data.shape[partitions.rank:], where (D) is a ragged dimension whose length is the number of data slices stacked for each partition. |