tf.raw_ops.AutoShardDataset | TensorFlow v2.16.1 (original) (raw)
tf.raw_ops.AutoShardDataset
Stay organized with collections Save and categorize content based on your preferences.
Creates a dataset that shards the input dataset.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.raw_ops.AutoShardDataset
tf.raw_ops.AutoShardDataset(
input_dataset,
num_workers,
index,
output_types,
output_shapes,
auto_shard_policy=0,
num_replicas=0,
name=None
)
Creates a dataset that shards the input dataset by num_workers, returning a sharded dataset for the index-th worker. This attempts to automatically shard a dataset by examining the Dataset graph and inserting a shard op before the inputs to a reader Dataset (e.g. CSVDataset, TFRecordDataset).
This dataset will throw a NotFound error if we cannot shard the dataset automatically.
Args | |
---|---|
input_dataset | A Tensor of type variant. A variant tensor representing the input dataset. |
num_workers | A Tensor of type int64. A scalar representing the number of workers to distribute this dataset across. |
index | A Tensor of type int64. A scalar representing the index of the current worker out of num_workers. |
output_types | A list of tf.DTypes that has length >= 1. |
output_shapes | A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1. |
auto_shard_policy | An optional int. Defaults to 0. |
num_replicas | An optional int. Defaults to 0. |
name | A name for the operation (optional). |
Returns |
---|
A Tensor of type variant. |