tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel  |  TensorFlow v2.16.1 (original) (raw)

tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel

Stay organized with collections Save and categorize content based on your preferences.

Fake-quantize the 'inputs' tensor of type float via per-channel floats

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.raw_ops.FakeQuantWithMinMaxVarsPerChannel

tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel(
    inputs, min, max, num_bits=8, narrow_range=False, name=None
)

Fake-quantize the inputs tensor of type float per-channel and one of the shapes: [d], [b, d] [b, h, w, d] via per-channel floats min and maxof shape [d] to outputs tensor of same shape as inputs.

Attributes

Before quantization, min and max values are adjusted with the following logic. It is suggested to have min <= 0 <= max. If 0 is not in the range of values, the behavior can be unexpected:

This operation has a gradient and thus allows for training min and maxvalues.

Args
inputs A Tensor of type float32.
min A Tensor of type float32.
max A Tensor of type float32.
num_bits An optional int. Defaults to 8.
narrow_range An optional bool. Defaults to False.
name A name for the operation (optional).
Returns
A Tensor of type float32.