tf.raw_ops.LeftShift | TensorFlow v2.16.1 (original) (raw)
tf.raw_ops.LeftShift
Stay organized with collections Save and categorize content based on your preferences.
Elementwise computes the bitwise left-shift of x
and y
.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.raw_ops.LeftShift
tf.raw_ops.LeftShift(
x, y, name=None
)
If y
is negative, or greater than or equal to the width of x
in bits the result is implementation defined.
Example:
import tensorflow as tf
from tensorflow.python.ops import bitwise_ops
import numpy as np
dtype_list = [tf.int8, tf.int16, tf.int32, tf.int64]
for dtype in dtype_list:
lhs = tf.constant([-1, -5, -3, -14], dtype=dtype)
rhs = tf.constant([5, 0, 7, 11], dtype=dtype)
left_shift_result = bitwise_ops.left_shift(lhs, rhs)
print(left_shift_result)
# This will print:
# tf.Tensor([ -32 -5 -128 0], shape=(4,), dtype=int8)
# tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int16)
# tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int32)
# tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int64)
lhs = np.array([-2, 64, 101, 32], dtype=np.int8)
rhs = np.array([-1, -5, -3, -14], dtype=np.int8)
bitwise_ops.left_shift(lhs, rhs)
# <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)>
Args | |
---|---|
x | A Tensor. Must be one of the following types: int8, int16, int32, int64, uint8, uint16, uint32, uint64. |
y | A Tensor. Must have the same type as x. |
name | A name for the operation (optional). |
Returns |
---|
A Tensor. Has the same type as x. |