tf.raw_ops.PartitionedCall | TensorFlow v2.16.1 (original) (raw)
tf.raw_ops.PartitionedCall
Stay organized with collections Save and categorize content based on your preferences.
returns f(inputs)
, where f
's body is placed and partitioned.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.raw_ops.PartitionedCall
tf.raw_ops.PartitionedCall(
args,
Tout,
f,
config='',
config_proto='',
executor_type='',
name=None
)
Asynchronously executes a function, potentially across multiple devices but within a single process. The kernel places and partitions a given function's underlying graph, and executes each of the partitioned subgraphs as a function.
Args | |
---|---|
args | A list of Tensor objects. A list of input tensors. |
Tout | A list of tf.DTypes. A list of output types. |
f | A function decorated with @Defun. A function that takes 'args', a list of tensors, and returns 'output', another list of tensors. Input and output types are specified by 'Tin' and 'Tout'. The function body of f will be placed and partitioned across devices, setting this op apart from the regular Call op. |
config | An optional string. Defaults to "". |
config_proto | An optional string. Defaults to "". |
executor_type | An optional string. Defaults to "". |
name | A name for the operation (optional). |
Returns |
---|
A list of Tensor objects of type Tout. |