tf.raw_ops.ReadVariableXlaSplitND  |  TensorFlow v2.16.1 (original) (raw)

tf.raw_ops.ReadVariableXlaSplitND

Stay organized with collections Save and categorize content based on your preferences.

Splits resource variable input tensor across all dimensions.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.raw_ops.ReadVariableXlaSplitND

tf.raw_ops.ReadVariableXlaSplitND(
    resource, T, N, num_splits, paddings=[], name=None
)

An op which splits the resource variable input tensor based on the given num_splits attribute, pads slices optionally, and returned the slices. Slices are returned in row-major order.

This op may be generated via the TPU bridge.

For example, with input tensor:

[[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]]

num_splits:

[2, 2]

and paddings:

[1, 1]

the expected outputs is:

[[0, 1],
 [3, 4]]
[[2, 0],
 [5, 0]]
[[6, 7],
 [0, 0]]
[[8, 0],
 [0, 0]]
Args
resource A Tensor of type resource. Resource variable of input tensor to split across all dimensions. } out_arg { name: "outputs" description: <
T A tf.DType.
N An int that is >= 1.
num_splits A list of ints. Number of ways to split per dimension. Shape dimensions must be evenly divisible.
paddings An optional list of ints. Defaults to []. Optional list of right paddings per dimension of input tensor to apply before splitting. This can be used to make a dimension evenly divisible.
name A name for the operation (optional).
Returns
A list of N Tensor objects with type T.