tf.raw_ops.SerializeManySparse | TensorFlow v2.16.1 (original) (raw)
tf.raw_ops.SerializeManySparse
Stay organized with collections Save and categorize content based on your preferences.
Serialize an N
-minibatch SparseTensor
into an [N, 3]
Tensor
object.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.raw_ops.SerializeManySparse
tf.raw_ops.SerializeManySparse(
sparse_indices,
sparse_values,
sparse_shape,
out_type=tf.dtypes.string,
name=None
)
The SparseTensor
must have rank R
greater than 1, and the first dimension is treated as the minibatch dimension. Elements of the SparseTensor
must be sorted in increasing order of this first dimension. The serializedSparseTensor
objects going into each row of serialized_sparse
will have rank R-1
.
The minibatch size N
is extracted from sparse_shape[0]
.
Args | |
---|---|
sparse_indices | A Tensor of type int64. 2-D. The indices of the minibatch SparseTensor. |
sparse_values | A Tensor. 1-D. The values of the minibatch SparseTensor. |
sparse_shape | A Tensor of type int64. 1-D. The shape of the minibatch SparseTensor. |
out_type | An optional tf.DType from: tf.string, tf.variant. Defaults to tf.string. The dtype to use for serialization; the supported types are string(default) and variant. |
name | A name for the operation (optional). |
Returns |
---|
A Tensor of type out_type. |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.