tf.repeat  |  TensorFlow v2.16.1 (original) (raw)

Repeat elements of input.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.repeat

tf.repeat(
    input, repeats, axis=None, name=None
)

Used in the notebooks

Used in the tutorials
Transfer learning with YAMNet for environmental sound classification Parametrized Quantum Circuits for Reinforcement Learning Recommend movies for users with TensorFlow Ranking Listwise ranking

See also tf.concat, tf.stack, tf.tile.

Args
input An N-dimensional Tensor.
repeats An 1-D int Tensor. The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. len(repeats)must equal input.shape[axis] if axis is not None.
axis An int. The axis along which to repeat values. By default, (axis=None), use the flattened input array, and return a flat output array.
name A name for the operation.
Returns
A Tensor which has the same shape as input, except along the given axis. If axis is None then the output array is flattened to match the flattened input array.

Example usage:

repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0) <tf.Tensor: shape=(5,), dtype=string, numpy=array([b'a', b'a', b'a', b'c', b'c'], dtype=object)>

repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0) <tf.Tensor: shape=(5, 2), dtype=int32, numpy= array([[1, 2], [1, 2], [3, 4], [3, 4], [3, 4]], dtype=int32)>

repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1) <tf.Tensor: shape=(2, 5), dtype=int32, numpy= array([[1, 1, 2, 2, 2], [3, 3, 4, 4, 4]], dtype=int32)>

repeat(3, repeats=4) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([3, 3, 3, 3], dtype=int32)>

repeat([[1,2], [3,4]], repeats=2) <tf.Tensor: shape=(8,), dtype=int32, numpy=array([1, 1, 2, 2, 3, 3, 4, 4], dtype=int32)>