tf.sparse.reorder  |  TensorFlow v2.16.1 (original) (raw)

tf.sparse.reorder

Stay organized with collections Save and categorize content based on your preferences.

Reorders a SparseTensor into the canonical, row-major ordering.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.sparse.reorder, tf.compat.v1.sparse_reorder

tf.sparse.reorder(
    sp_input, name=None
)

Used in the notebooks

Used in the tutorials
Client-efficient large-model federated learning via `federated_select` and sparse aggregation

Note that by convention, all sparse ops preserve the canonical ordering along increasing dimension number. The only time ordering can be violated is during manual manipulation of the indices and values to add entries.

Reordering does not affect the shape of the SparseTensor.

For example, if sp_input has shape [4, 5] and indices / values:

[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c

then the output will be a SparseTensor of shape [4, 5] andindices / values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d
Args
sp_input The input SparseTensor.
name A name prefix for the returned tensors (optional)
Returns
A SparseTensor with the same shape and non-empty values, but in canonical ordering.
Raises
TypeError If sp_input is not a SparseTensor.