tf.strings.unicode_encode | TensorFlow v2.16.1 (original) (raw)
tf.strings.unicode_encode
Stay organized with collections Save and categorize content based on your preferences.
Encodes each sequence of Unicode code points in input
into a string.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.strings.unicode_encode
tf.strings.unicode_encode(
input,
output_encoding,
errors='replace',
replacement_char=65533,
name=None
)
Used in the notebooks
Used in the guide |
---|
Unicode strings Tokenizing with TF Text |
result[i1...iN]
is the string formed by concatenating the Unicode codepoints input[1...iN, :]
, encoded using output_encoding
.
Args | |
---|---|
input | An N+1 dimensional potentially ragged integer tensor with shape[D1...DN, num_chars]. |
output_encoding | Unicode encoding that should be used to encode each codepoint sequence. Can be "UTF-8", "UTF-16-BE", or "UTF-32-BE". |
errors | Specifies the response when an invalid codepoint is encountered (optional). One of: * `'replace'`: Replace invalid codepoint with the `replacement_char`. (default) * `'ignore'`: Skip invalid codepoints. * `'strict'`: Raise an exception for any invalid codepoint. |
replacement_char | The replacement character codepoint to be used in place of any invalid input when errors='replace'. Any valid unicode codepoint may be used. The default value is the default unicode replacement character which is 0xFFFD (U+65533). |
name | A name for the operation (optional). |
Returns |
---|
A N dimensional string tensor with shape [D1...DN]. |
Example:
input = tf.ragged.constant(
[[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]])
print(unicode_encode(input, 'UTF-8'))
tf.Tensor([b'G\xc3\xb6\xc3\xb6dnight' b'\xf0\x9f\x98\x8a'],
shape=(2,), dtype=string)