tf.tpu.experimental.embedding.TPUEmbeddingForServing | TensorFlow v2.16.1 (original) (raw)
tf.tpu.experimental.embedding.TPUEmbeddingForServing
Stay organized with collections Save and categorize content based on your preferences.
The TPUEmbedding mid level API running on CPU for serving.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.tpu.experimental.embedding.TPUEmbeddingForServing
tf.tpu.experimental.embedding.TPUEmbeddingForServing(
feature_config: Union[tf.tpu.experimental.embedding.FeatureConfig, Iterable],
optimizer: Optional[tpu_embedding_v2_utils._Optimizer],
experimental_sparsecore_restore_info: Optional[Dict[str, Any]] = None
)
You can first train your model using the TPUEmbedding class and save the checkpoint. Then use this class to restore the checkpoint to do serving.
First train a model and save the checkpoint.
model = model_fn(...)
strategy = tf.distribute.TPUStrategy(...)
with strategy.scope():
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
feature_config=feature_config,
optimizer=tf.tpu.experimental.embedding.SGD(0.1))
# Your custom training code.
checkpoint = tf.train.Checkpoint(model=model, embedding=embedding)
checkpoint.save(...)
Then restore the checkpoint and do serving.
# Restore the model on CPU.
model = model_fn(...)
embedding = tf.tpu.experimental.embedding.TPUEmbeddingForServing(
feature_config=feature_config,
optimizer=tf.tpu.experimental.embedding.SGD(0.1))
checkpoint = tf.train.Checkpoint(model=model, embedding=embedding)
checkpoint.restore(...)
result = embedding(...)
table = embedding.embedding_table
Args | |
---|---|
feature_config | A nested structure oftf.tpu.experimental.embedding.FeatureConfig configs. |
optimizer | An instance of one of tf.tpu.experimental.embedding.SGD,tf.tpu.experimental.embedding.Adagrad ortf.tpu.experimental.embedding.Adam. When not created under TPUStrategy may be set to None to avoid the creation of the optimizer slot variables, useful for optimizing memory consumption when exporting the model for serving where slot variables aren't needed. |
experimental_sparsecore_restore_info | Information from the sparse core training, required to restore from checkpoint for serving (like number of TPU devices used num_tpu_devices.) |
Raises | |
---|---|
RuntimeError | If created under TPUStrategy. |
Attributes | |
---|---|
embedding_tables | Returns a dict of embedding tables, keyed by TableConfig. |
Methods
build
build()
Create variables and slots variables for TPU embeddings.
embedding_lookup
embedding_lookup(
features: Any, weights: Optional[Any] = None
) -> Any
Apply standard lookup ops on CPU.
Args | |
---|---|
features | A nested structure of tf.Tensors, tf.SparseTensors ortf.RaggedTensors, with the same structure as feature_config. Inputs will be downcast to tf.int32. Only one type out of tf.SparseTensoror tf.RaggedTensor is supported per call. |
weights | If not None, a nested structure of tf.Tensors,tf.SparseTensors or tf.RaggedTensors, matching the above, except that the tensors should be of float type (and they will be downcast totf.float32). For tf.SparseTensors we assume the indices are the same for the parallel entries from features and similarly fortf.RaggedTensors we assume the row_splits are the same. |
Returns |
---|
A nested structure of Tensors with the same structure as input features. |
__call__
__call__(
features: Any, weights: Optional[Any] = None
) -> Any
Call the mid level api to do embedding lookup.