tf.train.Int64List  |  TensorFlow v2.16.1 (original) (raw)

tf.train.Int64List

Stay organized with collections Save and categorize content based on your preferences.

Used in tf.train.Example protos. Holds a list of Int64s.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.train.Int64List

Used in the notebooks

Used in the tutorials
TFRecord and tf.train.Example Feature Engineering using TFX Pipeline and TensorFlow Transform Graph regularization for sentiment classification using synthesized graphs Graph-based Neural Structured Learning in TFX

An Example proto is a representation of the following python type:

Dict[str,
     Union[List[bytes],
           List[int64],
           List[float]]]

This proto implements the List[int64] portion.

from google.protobuf import text_format example = text_format.Parse(''' features { feature {key: "my_feature" value {int64_list {value: [1, 2, 3, 4]} } } }''', tf.train.Example()) `` example.features.feature['my_feature'].int64_list.value [1, 2, 3, 4]

Use tf.io.parse_example to extract tensors from a serialized Example proto:

tf.io.parse_example( example.SerializeToString(), features = {'my_feature': tf.io.RaggedFeature(dtype=tf.int64)}) {'my_feature': <tf.Tensor: shape=(4,), dtype=float32, numpy=array([1, 2, 3, 4], dtype=int64)>}

See the tf.train.Exampleguide for usage details.

Attributes
value repeated int64 value