tfc.layers.Parameter | TensorFlow v2.16.1 (original) (raw)
tfc.layers.Parameter
Stay organized with collections Save and categorize content based on your preferences.
Reparameterized Layer
variable.
View aliases
Main aliases
tfc.layers.Parameter(
name=None
)
This object represents a parameter of a tf.keras.layer.Layer
object which isn't directly stored in a tf.Variable, but can be represented as a function (of any number of tf.Variable attributes).
Attributes | |
---|---|
name | Returns the name of this module as passed or determined in the ctor. |
name_scope | Returns a tf.name_scope instance for this class. |
non_trainable_variables | Sequence of non-trainable variables owned by this module and its submodules. |
submodules | Sequence of all sub-modules.Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on). a = tf.Module() b = tf.Module() c = tf.Module() a.b = b b.c = c list(a.submodules) == [b, c] True list(b.submodules) == [c] True list(c.submodules) == [] True |
trainable_variables | Sequence of trainable variables owned by this module and its submodules. |
variables | Sequence of variables owned by this module and its submodules. |
Methods
get_config
@abc.abstractmethod
get_config()
Returns the configuration of the Parameter
.
get_weights
get_weights()
set_weights
set_weights(
weights
)
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method | The method to wrap. |
Returns |
---|
The original method wrapped such that it enters the module's name scope. |
__call__
@abc.abstractmethod
__call__( compute_dtype=None )
Computes and returns the parameter value as a tf.Tensor.