Module: tf.keras.layers | TensorFlow v2.0.0 (original) (raw)
Keras layers API.
Classes
class AbstractRNNCell: Abstract object representing an RNN cell.
class Activation: Applies an activation function to an output.
class ActivityRegularization: Layer that applies an update to the cost function based input activity.
class Add: Layer that adds a list of inputs.
class AdditiveAttention: Additive attention layer, a.k.a. Bahdanau-style attention.
class AlphaDropout: Applies Alpha Dropout to the input.
class Attention: Dot-product attention layer, a.k.a. Luong-style attention.
class Average: Layer that averages a list of inputs.
class AveragePooling1D: Average pooling for temporal data.
class AveragePooling2D: Average pooling operation for spatial data.
class AveragePooling3D: Average pooling operation for 3D data (spatial or spatio-temporal).
class AvgPool1D: Average pooling for temporal data.
class AvgPool2D: Average pooling operation for spatial data.
class AvgPool3D: Average pooling operation for 3D data (spatial or spatio-temporal).
class BatchNormalization: Base class of Batch normalization layer (Ioffe and Szegedy, 2014).
class Bidirectional: Bidirectional wrapper for RNNs.
class Concatenate: Layer that concatenates a list of inputs.
class Conv1D: 1D convolution layer (e.g. temporal convolution).
class Conv2D: 2D convolution layer (e.g. spatial convolution over images).
class Conv2DTranspose: Transposed convolution layer (sometimes called Deconvolution).
class Conv3D: 3D convolution layer (e.g. spatial convolution over volumes).
class Conv3DTranspose: Transposed convolution layer (sometimes called Deconvolution).
class ConvLSTM2D: Convolutional LSTM.
class Convolution1D: 1D convolution layer (e.g. temporal convolution).
class Convolution2D: 2D convolution layer (e.g. spatial convolution over images).
class Convolution2DTranspose: Transposed convolution layer (sometimes called Deconvolution).
class Convolution3D: 3D convolution layer (e.g. spatial convolution over volumes).
class Convolution3DTranspose: Transposed convolution layer (sometimes called Deconvolution).
class Cropping1D: Cropping layer for 1D input (e.g. temporal sequence).
class Cropping2D: Cropping layer for 2D input (e.g. picture).
class Cropping3D: Cropping layer for 3D data (e.g. spatial or spatio-temporal).
class Dense: Just your regular densely-connected NN layer.
class DenseFeatures: A layer that produces a dense Tensor
based on given feature_columns
.
class DepthwiseConv2D: Depthwise separable 2D convolution.
class Dot: Layer that computes a dot product between samples in two tensors.
class Dropout: Applies Dropout to the input.
class ELU: Exponential Linear Unit.
class Embedding: Turns positive integers (indexes) into dense vectors of fixed size.
class Flatten: Flattens the input. Does not affect the batch size.
class GRU: Gated Recurrent Unit - Cho et al. 2014.
class GRUCell: Cell class for the GRU layer.
class GaussianDropout: Apply multiplicative 1-centered Gaussian noise.
class GaussianNoise: Apply additive zero-centered Gaussian noise.
class GlobalAveragePooling1D: Global average pooling operation for temporal data.
class GlobalAveragePooling2D: Global average pooling operation for spatial data.
class GlobalAveragePooling3D: Global Average pooling operation for 3D data.
class GlobalAvgPool1D: Global average pooling operation for temporal data.
class GlobalAvgPool2D: Global average pooling operation for spatial data.
class GlobalAvgPool3D: Global Average pooling operation for 3D data.
class GlobalMaxPool1D: Global max pooling operation for temporal data.
class GlobalMaxPool2D: Global max pooling operation for spatial data.
class GlobalMaxPool3D: Global Max pooling operation for 3D data.
class GlobalMaxPooling1D: Global max pooling operation for temporal data.
class GlobalMaxPooling2D: Global max pooling operation for spatial data.
class GlobalMaxPooling3D: Global Max pooling operation for 3D data.
class InputLayer: Layer to be used as an entry point into a Network (a graph of layers).
class InputSpec: Specifies the ndim, dtype and shape of every input to a layer.
class LSTM: Long Short-Term Memory layer - Hochreiter 1997.
class LSTMCell: Cell class for the LSTM layer.
class Lambda: Wraps arbitrary expressions as a Layer
object.
class Layer: Base layer class.
class LayerNormalization: Layer normalization layer (Ba et al., 2016).
class LeakyReLU: Leaky version of a Rectified Linear Unit.
class LocallyConnected1D: Locally-connected layer for 1D inputs.
class LocallyConnected2D: Locally-connected layer for 2D inputs.
class Masking: Masks a sequence by using a mask value to skip timesteps.
class MaxPool1D: Max pooling operation for temporal data.
class MaxPool2D: Max pooling operation for spatial data.
class MaxPool3D: Max pooling operation for 3D data (spatial or spatio-temporal).
class MaxPooling1D: Max pooling operation for temporal data.
class MaxPooling2D: Max pooling operation for spatial data.
class MaxPooling3D: Max pooling operation for 3D data (spatial or spatio-temporal).
class Maximum: Layer that computes the maximum (element-wise) a list of inputs.
class Minimum: Layer that computes the minimum (element-wise) a list of inputs.
class Multiply: Layer that multiplies (element-wise) a list of inputs.
class PReLU: Parametric Rectified Linear Unit.
class Permute: Permutes the dimensions of the input according to a given pattern.
class RNN: Base class for recurrent layers.
class ReLU: Rectified Linear Unit activation function.
class RepeatVector: Repeats the input n times.
class Reshape: Reshapes an output to a certain shape.
class SeparableConv1D: Depthwise separable 1D convolution.
class SeparableConv2D: Depthwise separable 2D convolution.
class SeparableConvolution1D: Depthwise separable 1D convolution.
class SeparableConvolution2D: Depthwise separable 2D convolution.
class SimpleRNN: Fully-connected RNN where the output is to be fed back to input.
class SimpleRNNCell: Cell class for SimpleRNN.
class Softmax: Softmax activation function.
class SpatialDropout1D: Spatial 1D version of Dropout.
class SpatialDropout2D: Spatial 2D version of Dropout.
class SpatialDropout3D: Spatial 3D version of Dropout.
class StackedRNNCells: Wrapper allowing a stack of RNN cells to behave as a single cell.
class Subtract: Layer that subtracts two inputs.
class ThresholdedReLU: Thresholded Rectified Linear Unit.
class TimeDistributed: This wrapper allows to apply a layer to every temporal slice of an input.
class UpSampling1D: Upsampling layer for 1D inputs.
class UpSampling2D: Upsampling layer for 2D inputs.
class UpSampling3D: Upsampling layer for 3D inputs.
class Wrapper: Abstract wrapper base class.
class ZeroPadding1D: Zero-padding layer for 1D input (e.g. temporal sequence).
class ZeroPadding2D: Zero-padding layer for 2D input (e.g. picture).
class ZeroPadding3D: Zero-padding layer for 3D data (spatial or spatio-temporal).
Functions
Input(...): Input()
is used to instantiate a Keras tensor.
add(...): Functional interface to the Add
layer.
average(...): Functional interface to the Average
layer.
concatenate(...): Functional interface to the Concatenate
layer.
deserialize(...): Instantiates a layer from a config dictionary.
dot(...): Functional interface to the Dot
layer.
maximum(...): Functional interface to the Maximum
layer that computes
minimum(...): Functional interface to the Minimum
layer.
multiply(...): Functional interface to the Multiply
layer.
subtract(...): Functional interface to the Subtract
layer.