00の著者・刊行日 わかりやすく解説 Weblio辞書 (original) (raw)

この記事には独自研究が含まれているおそれがあります。 問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2016年2月)

0 の 0 乗(れいのれいじょう)は、累乗あるいは指数関数において、底を 0、指数を 0 としたものである。その値は、代数学組合せ論などの文脈では通常 1 と定義される[注 1]一方で、解析学の文脈では二変数関数 xy が原点 (x, y) = (0, 0) において連続とならないため定義されない場合もある。

背景

実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。

( ∗ ) x 1 := x , ( ∗ ∗ ) x n + 1 := x n × x ( n ≥ 1 ) . {\displaystyle {\begin{aligned}&(*)&x^{1}&:=x,\\&(**)&x^{n+1}&:=x^{n}\times x\quad (n\geq 1).\end{aligned}}}

関数 z = x y をプロットしたもの。xy が様々な関係を保って原点に接近するとき(赤や緑の曲線)、z は任意の極限値をとり得る。緑の曲線は、そのうちで z の極限が 1 となるものである。

冪を自然数ではなく実数の範囲で考え、00 を二変数関数 x yx = y = 0 における値だと考えると、次のようになる。

二変数関数 x y は、定義域を D = { (x, y) | x > 0 } ∪ { (0, y) | y > 0 }とした場合には、D 全体で連続となる。しかし、原点 (0, 0) を付け加えて、D_′= D ∪ {(0, 0)} を定義域とした場合には、原点における値 00 をどのように定義しても、原点において連続とはならない。それは、_D' 内で(原点を通らず)原点に近づく経路によってその極限値が異なるからである。例えば、y 軸 (x = 0) に沿って原点に近づくときの極限値は

lim y → + 0 0 y = 0 {\displaystyle \lim _{y\to +0}0^{y}=0}