ak.pad_none — Awkward Array 2.8.2 documentation (original) (raw)
Defined in awkward.operations.ak_pad_none on line 21.
ak.pad_none(array, target, axis=1, *, clip=False, highlevel=True, behavior=None, attrs=None)#
Parameters:
- array – Array-like data (anything ak.to_layout recognizes).
- target (int) – The intended length of the lists. If
clip=True
, the output lists will have exactly this length; otherwise, they will have at least this length. - axis (int) – The dimension at which this operation is applied. The outermost dimension is
0
, followed by1
, etc., and negative values count backward from the innermost:-1
is the innermost dimension,-2
is the next level up, etc. - clip (bool) – If True, the output lists will have regular lengths (ak.types.RegularType) of exactly
target
; otherwise the output lists will have in-principle variable lengths (ak.types.ListType) of at leasttarget
. - highlevel (bool) – If True, return an ak.Array; otherwise, return a low-level ak.contents.Content subclass.
- behavior (None or dict) – Custom ak.behavior for the output array, if high-level.
- attrs (None or dict) – Custom attributes for the output array, if high-level.
Increase the lengths of lists to a target length by adding None values.
Consider the following
array = ak.Array([[[1.1, 2.2, 3.3], ... [], ... [4.4, 5.5], ... [6.6]], ... [], ... [[7.7], ... [8.8, 9.9] ... ]])
At axis=0
, this operation pads the whole array, adding None at the outermost level:
ak.pad_none(array, 5, axis=0).show() [[[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6]], [], [[7.7], [8.8, 9.9]], None, None]
At axis=1
, this operation pads the first nested level:
ak.pad_none(array, 3, axis=1).show() [[[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6]], [None, None, None], [[7.7], [8.8, 9.9], None]]
And so on for higher values of axis
:
ak.pad_none(array, 2, axis=2).show() [[[1.1, 2.2, 3.3], [None, None], [4.4, 5.5], [6.6, None]], [], [[7.7, None], [8.8, 9.9]]]
Note that the clip
parameter not only determines whether the lengths are at least target
or exactly target
, it also determines the type of the output:
clip=True
returns regular lists (ak.types.RegularType), andclip=False
returns in-principle variable lengths (ak.types.ListType).
The in-principle variable-length lists might, in fact, all have the same length, but the type difference is significant, for instance in broadcasting rules (see ak.broadcast_arrays).
The difference between
ak.pad_none(array, 2, axis=2) <Array [[[1.1, 2.2, 3.3], ..., [...]], ...] type='3 * var * var * ?float64'>
and
ak.pad_none(array, 2, axis=2, clip=True) <Array [[[1.1, 2.2], ..., [6.6, None]], ...] type='3 * var * 2 * ?float64'>
is not just in the length of [1.1, 2.2, 3.3]
vs [1.1, 2.2]
, but also in the distinction between the following types.
ak.pad_none(array, 2, axis=2).type.show() 3 * var * var * ?float64 ak.pad_none(array, 2, axis=2, clip=True).type.show() 3 * var * 2 * ?float64