clang: clang::ArraySectionExpr Class Reference (original) (raw)

This class represents BOTH the OpenMP Array Section and OpenACC 'subarray', with a boolean differentiator. More...

Public Types

enum

ArraySectionType { OMPArraySection, OpenACCArraySection }

- Public Types inherited from clang::Expr

enum

LValueClassification {
LV_Valid, LV_NotObjectType, LV_IncompleteVoidType, LV_DuplicateVectorComponents,
LV_InvalidExpression, LV_InvalidMessageExpression, LV_MemberFunction, LV_SubObjCPropertySetting,
LV_ClassTemporary, LV_ArrayTemporary
}

enum

isModifiableLvalueResult {
MLV_Valid, MLV_NotObjectType, MLV_IncompleteVoidType, MLV_DuplicateVectorComponents,
MLV_InvalidExpression, MLV_LValueCast, MLV_IncompleteType, MLV_ConstQualified,
MLV_ConstQualifiedField, MLV_ConstAddrSpace, MLV_ArrayType, MLV_NoSetterProperty,
MLV_MemberFunction, MLV_SubObjCPropertySetting, MLV_InvalidMessageExpression, MLV_ClassTemporary,
MLV_ArrayTemporary
}

enum

SideEffectsKind { SE_NoSideEffects, SE_AllowUndefinedBehavior, SE_AllowSideEffects }

enum class

ConstantExprKind { Normal, NonClassTemplateArgument, ClassTemplateArgument, ImmediateInvocation }

enum

NullPointerConstantKind {
NPCK_NotNull = 0 , NPCK_ZeroExpression, NPCK_ZeroLiteral, NPCK_CXX11_nullptr,
NPCK_GNUNull
}

Enumeration used to describe the kind of Null pointer constant returned from [isNullPointerConstant()](classclang%5F1%5F1Expr.html#aa1d79a39abcf576a82b97cff17f893f8 "isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant."). More...

enum

NullPointerConstantValueDependence { NPC_NeverValueDependent = 0 , NPC_ValueDependentIsNull, NPC_ValueDependentIsNotNull }

Enumeration used to describe how [isNullPointerConstant()](classclang%5F1%5F1Expr.html#aa1d79a39abcf576a82b97cff17f893f8 "isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant.") should cope with value-dependent expressions. More...

- Public Types inherited from clang::Stmt

enum

StmtClass { NoStmtClass = 0 }

enum

Likelihood { LH_Unlikely = -1 , LH_None, LH_Likely }

The likelihood of a branch being taken. More...

using

child_iterator = StmtIterator

Child Iterators: All subclasses must implement 'children' to permit easy iteration over the substatements/subexpressions of an AST node.

using

const_child_iterator = ConstStmtIterator

using

child_range = llvm::iterator_range< child_iterator >

using

const_child_range = llvm::iterator_range< const_child_iterator >

Public Member Functions

ArraySectionExpr (Expr *Base, Expr *LowerBound, Expr *Length, Expr *Stride, QualType Type, ExprValueKind VK, ExprObjectKind OK, SourceLocation ColonLocFirst, SourceLocation ColonLocSecond, SourceLocation RBracketLoc)

ArraySectionExpr (Expr *Base, Expr *LowerBound, Expr *Length, QualType Type, ExprValueKind VK, ExprObjectKind OK, SourceLocation ColonLoc, SourceLocation RBracketLoc)

ArraySectionExpr (EmptyShell Shell)

Create an empty array section expression.

bool

isOMPArraySection () const

bool

isOpenACCArraySection () const

Expr *

getBase ()

Get base of the array section.

const Expr *

getBase () const

Expr *

getLowerBound ()

Get lower bound of array section.

const Expr *

getLowerBound () const

Expr *

getLength ()

Get length of array section.

const Expr *

getLength () const

Expr *

getStride ()

Get stride of array section.

const Expr *

getStride () const

SourceLocation

getBeginLoc () const LLVM_READONLY

SourceLocation

getEndLoc () const LLVM_READONLY

SourceLocation

getColonLocFirst () const

SourceLocation

getColonLocSecond () const

SourceLocation

getRBracketLoc () const

SourceLocation

getExprLoc () const LLVM_READONLY

child_range

children ()

const_child_range

children () const

- Public Member Functions inherited from clang::Expr

Expr ()=delete

Expr (const Expr &)=delete

Expr (Expr &&)=delete

Expr &

operator= (const Expr &)=delete

Expr &

operator= (Expr &&)=delete

QualType

getType () const

void

setType (QualType t)

QualType

getEnumCoercedType (const ASTContext &Ctx) const

If this expression is an enumeration constant, return the enumeration type under which said constant was declared.

ExprDependence

getDependence () const

bool

isValueDependent () const

Determines whether the value of this expression depends on.

bool

isTypeDependent () const

Determines whether the type of this expression depends on.

bool

isInstantiationDependent () const

Whether this expression is instantiation-dependent, meaning that it depends in some way on.

bool

containsUnexpandedParameterPack () const

Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates).

bool

containsErrors () const

Whether this expression contains subexpressions which had errors, e.g.

SourceLocation

getExprLoc () const LLVM_READONLY

getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic expression.

bool

isReadIfDiscardedInCPlusPlus11 () const

Determine whether an lvalue-to-rvalue conversion should implicitly be applied to this expression if it appears as a discarded-value expression in C++11 onwards.

bool

isUnusedResultAWarning (const Expr *&WarnExpr, SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const

isUnusedResultAWarning - Return true if this immediate expression should be warned about if the result is unused.

bool

isLValue () const

isLValue - True if this expression is an "l-value" according to the rules of the current language.

bool

isPRValue () const

bool

isXValue () const

bool

isGLValue () const

LValueClassification

ClassifyLValue (ASTContext &Ctx) const

Reasons why an expression might not be an l-value.

isModifiableLvalueResult

isModifiableLvalue (ASTContext &Ctx, SourceLocation *Loc=nullptr) const

isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, does not have an incomplete type, does not have a const-qualified type, and if it is a structure or union, does not have any member (including, recursively, any member or element of all contained aggregates or unions) with a const-qualified type.

Classification

Classify (ASTContext &Ctx) const

Classify - Classify this expression according to the C++11 expression taxonomy.

Classification

ClassifyModifiable (ASTContext &Ctx, SourceLocation &Loc) const

ClassifyModifiable - Classify this expression according to the C++11 expression taxonomy, and see if it is valid on the left side of an assignment.

FPOptions

getFPFeaturesInEffect (const LangOptions &LO) const

Returns the set of floating point options that apply to this expression.

ExprValueKind

getValueKind () const

getValueKind - The value kind that this expression produces.

ExprObjectKind

getObjectKind () const

getObjectKind - The object kind that this expression produces.

bool

isOrdinaryOrBitFieldObject () const

void

setValueKind (ExprValueKind Cat)

setValueKind - Set the value kind produced by this expression.

void

setObjectKind (ExprObjectKind Cat)

setObjectKind - Set the object kind produced by this expression.

bool

refersToBitField () const

Returns true if this expression is a gl-value that potentially refers to a bit-field.

FieldDecl *

getSourceBitField ()

If this expression refers to a bit-field, retrieve the declaration of that bit-field.

EnumConstantDecl *

getEnumConstantDecl ()

If this expression refers to an enum constant, retrieve its declaration.

const EnumConstantDecl *

getEnumConstantDecl () const

const FieldDecl *

getSourceBitField () const

Decl *

getReferencedDeclOfCallee ()

const Decl *

getReferencedDeclOfCallee () const

const ObjCPropertyRefExpr *

getObjCProperty () const

If this expression is an l-value for an Objective C property, find the underlying property reference expression.

bool

isObjCSelfExpr () const

Check if this expression is the ObjC 'self' implicit parameter.

bool

refersToVectorElement () const

Returns whether this expression refers to a vector element.

bool

refersToMatrixElement () const

Returns whether this expression refers to a matrix element.

bool

refersToGlobalRegisterVar () const

Returns whether this expression refers to a global register variable.

bool

hasPlaceholderType () const

Returns whether this expression has a placeholder type.

bool

hasPlaceholderType (BuiltinType::Kind K) const

Returns whether this expression has a specific placeholder type.

bool

isKnownToHaveBooleanValue (bool Semantic=true) const

isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or 1.

bool

isFlexibleArrayMemberLike (ASTContext &Context, LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, bool IgnoreTemplateOrMacroSubstitution=false) const

Check whether this array fits the idiom of a flexible array member, depending on the value of -fstrict-flex-array.

std::optional< llvm::APSInt >

getIntegerConstantExpr (const ASTContext &Ctx, SourceLocation *Loc=nullptr) const

isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.

bool

isIntegerConstantExpr (const ASTContext &Ctx, SourceLocation *Loc=nullptr) const

bool

isCXX98IntegralConstantExpr (const ASTContext &Ctx) const

isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C++98.

bool

isCXX11ConstantExpr (const ASTContext &Ctx, APValue *Result=nullptr, SourceLocation *Loc=nullptr) const

isCXX11ConstantExpr - Return true if this expression is a constant expression in C++11.

bool

isConstantInitializer (ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const

isConstantInitializer - Returns true if this expression can be emitted to IR as a constant, and thus can be used as a constant initializer in C.

const ValueDecl *

getAsBuiltinConstantDeclRef (const ASTContext &Context) const

If this expression is an unambiguous reference to a single declaration, in the style of __builtin_function_start, return that declaration.

bool

EvaluateAsRValue (EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const

EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy technique (that has nothing to do with language standards) that we want to, even if the expression has side-effects.

bool

EvaluateAsBooleanCondition (bool &Result, const ASTContext &Ctx, bool InConstantContext=false) const

EvaluateAsBooleanCondition - Return true if this is a constant which we can fold and convert to a boolean condition using any crazy technique that we want to, even if the expression has side-effects.

bool

EvaluateAsInt (EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const

EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer, using any crazy technique that we want to.

bool

EvaluateAsFloat (llvm::APFloat &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const

EvaluateAsFloat - Return true if this is a constant which we can fold and convert to a floating point value, using any crazy technique that we want to.

bool

EvaluateAsFixedPoint (EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const

EvaluateAsFixedPoint - Return true if this is a constant which we can fold and convert to a fixed point value.

bool

isEvaluatable (const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const

isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-effects, but discard the result.

bool

HasSideEffects (const ASTContext &Ctx, bool IncludePossibleEffects=true) const

HasSideEffects - This routine returns true for all those expressions which have any effect other than producing a value.

bool

hasNonTrivialCall (const ASTContext &Ctx) const

Determine whether this expression involves a call to any function that is not trivial.

llvm::APSInt

EvaluateKnownConstInt (const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const

EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.

llvm::APSInt

EvaluateKnownConstIntCheckOverflow (const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const

void

EvaluateForOverflow (const ASTContext &Ctx) const

bool

EvaluateAsLValue (EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const

EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known address, with no side-effects.

bool

EvaluateAsInitializer (APValue &Result, const ASTContext &Ctx, const VarDecl *VD, SmallVectorImpl< PartialDiagnosticAt > &Notes, bool IsConstantInitializer) const

EvaluateAsInitializer - Evaluate an expression as if it were the initializer of the given declaration.

bool

EvaluateWithSubstitution (APValue &Value, ASTContext &Ctx, const FunctionDecl *Callee, ArrayRef< const Expr * > Args, const Expr *This=nullptr) const

EvaluateWithSubstitution - Evaluate an expression as if from the context of a call to the given function with the given arguments, inside an unevaluated context.

bool

EvaluateAsConstantExpr (EvalResult &Result, const ASTContext &Ctx, ConstantExprKind Kind=ConstantExprKind::Normal) const

Evaluate an expression that is required to be a constant expression.

bool

tryEvaluateObjectSize (uint64_t &Result, ASTContext &Ctx, unsigned Type) const

If the current Expr is a pointer, this will try to statically determine the number of bytes available where the pointer is pointing.

bool

tryEvaluateStrLen (uint64_t &Result, ASTContext &Ctx) const

If the current Expr is a pointer, this will try to statically determine the strlen of the string pointed to.

bool

EvaluateCharRangeAsString (std::string &Result, const Expr *SizeExpression, const Expr *PtrExpression, ASTContext &Ctx, EvalResult &Status) const

std::optional< std::string >

tryEvaluateString (ASTContext &Ctx) const

If the current Expr can be evaluated to a pointer to a null-terminated constant string, return the constant string (without the terminating null).

NullPointerConstantKind

isNullPointerConstant (ASTContext &Ctx, NullPointerConstantValueDependence NPC) const

isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant.

bool

isOBJCGCCandidate (ASTContext &Ctx) const

isOBJCGCCandidate - Return true if this expression may be used in a read/ write barrier.

bool

isBoundMemberFunction (ASTContext &Ctx) const

Returns true if this expression is a bound member function.

Expr *

IgnoreUnlessSpelledInSource ()

Skip past any invisible AST nodes which might surround this statement, such as ExprWithCleanups or ImplicitCastExpr nodes, but also injected CXXMemberExpr and CXXConstructExpr which represent implicit conversions.

const Expr *

IgnoreUnlessSpelledInSource () const

Expr *

IgnoreImpCasts () LLVM_READONLY

Skip past any implicit casts which might surround this expression until reaching a fixed point.

const Expr *

IgnoreImpCasts () const

Expr *

IgnoreCasts () LLVM_READONLY

Skip past any casts which might surround this expression until reaching a fixed point.

const Expr *

IgnoreCasts () const

Expr *

IgnoreImplicit () LLVM_READONLY

Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.

const Expr *

IgnoreImplicit () const

Expr *

IgnoreImplicitAsWritten () LLVM_READONLY

Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.

const Expr *

IgnoreImplicitAsWritten () const

Expr *

IgnoreParens () LLVM_READONLY

Skip past any parentheses which might surround this expression until reaching a fixed point.

const Expr *

IgnoreParens () const

Expr *

IgnoreParenImpCasts () LLVM_READONLY

Skip past any parentheses and implicit casts which might surround this expression until reaching a fixed point.

const Expr *

IgnoreParenImpCasts () const

Expr *

IgnoreParenCasts () LLVM_READONLY

Skip past any parentheses and casts which might surround this expression until reaching a fixed point.

const Expr *

IgnoreParenCasts () const

Expr *

IgnoreConversionOperatorSingleStep () LLVM_READONLY

Skip conversion operators.

const Expr *

IgnoreConversionOperatorSingleStep () const

Expr *

IgnoreParenLValueCasts () LLVM_READONLY

Skip past any parentheses and lvalue casts which might surround this expression until reaching a fixed point.

const Expr *

IgnoreParenLValueCasts () const

Expr *

IgnoreParenNoopCasts (const ASTContext &Ctx) LLVM_READONLY

Skip past any parentheses and casts which do not change the value (including ptr->int casts of the same size) until reaching a fixed point.

const Expr *

IgnoreParenNoopCasts (const ASTContext &Ctx) const

Expr *

IgnoreParenBaseCasts () LLVM_READONLY

Skip past any parentheses and derived-to-base casts until reaching a fixed point.

const Expr *

IgnoreParenBaseCasts () const

bool

isDefaultArgument () const

Determine whether this expression is a default function argument.

bool

isTemporaryObject (ASTContext &Ctx, const CXXRecordDecl *TempTy) const

Determine whether the result of this expression is a temporary object of the given class type.

bool

isImplicitCXXThis () const

Whether this expression is an implicit reference to 'this' in C++.

const CXXRecordDecl *

getBestDynamicClassType () const

For an expression of class type or pointer to class type, return the most derived class decl the expression is known to refer to.

const Expr *

getBestDynamicClassTypeExpr () const

Get the inner expression that determines the best dynamic class.

const Expr *

skipRValueSubobjectAdjustments (SmallVectorImpl< const Expr * > &CommaLHS, SmallVectorImpl< SubobjectAdjustment > &Adjustments) const

Walk outwards from an expression we want to bind a reference to and find the expression whose lifetime needs to be extended.

const Expr *

skipRValueSubobjectAdjustments () const

- Public Member Functions inherited from clang::ValueStmt

const Expr *

getExprStmt () const

Expr *

getExprStmt ()

- Public Member Functions inherited from clang::Stmt

void *

operator new (size_t bytes, const ASTContext &C, unsigned alignment=8)

void *

operator new (size_t bytes, const ASTContext *C, unsigned alignment=8)

void *

operator new (size_t bytes, void *mem) noexcept

void

operator delete (void *, const ASTContext &, unsigned) noexcept

void

operator delete (void *, const ASTContext *, unsigned) noexcept

void

operator delete (void *, size_t) noexcept

void

operator delete (void *, void *) noexcept

Stmt ()=delete

Stmt (const Stmt &)=delete

Stmt (Stmt &&)=delete

Stmt &

operator= (const Stmt &)=delete

Stmt &

operator= (Stmt &&)=delete

Stmt (StmtClass SC)

StmtClass

getStmtClass () const

const char *

getStmtClassName () const

SourceRange

getSourceRange () const LLVM_READONLY

SourceLocation tokens are not useful in isolation - they are low level value objects created/interpreted by SourceManager.

SourceLocation

getBeginLoc () const LLVM_READONLY

SourceLocation

getEndLoc () const LLVM_READONLY

void

dump () const

Dumps the specified AST fragment and all subtrees to llvm::errs().

void

dump (raw_ostream &OS, const ASTContext &Context) const

int64_t

getID (const ASTContext &Context) const

void

dumpColor () const

dumpColor - same as dump(), but forces color highlighting.

void

dumpPretty (const ASTContext &Context) const

dumpPretty/printPretty - These two methods do a "pretty print" of the AST back to its original source language syntax.

void

printPretty (raw_ostream &OS, PrinterHelper *Helper, const PrintingPolicy &Policy, unsigned Indentation=0, StringRef NewlineSymbol="\n", const ASTContext *Context=nullptr) const

void

printPrettyControlled (raw_ostream &OS, PrinterHelper *Helper, const PrintingPolicy &Policy, unsigned Indentation=0, StringRef NewlineSymbol="\n", const ASTContext *Context=nullptr) const

void

printJson (raw_ostream &Out, PrinterHelper *Helper, const PrintingPolicy &Policy, bool AddQuotes) const

Pretty-prints in JSON format.

void

viewAST () const

viewAST - Visualize an AST rooted at this Stmt* using GraphViz.

Stmt *

IgnoreContainers (bool IgnoreCaptured=false)

Skip no-op (attributed, compound) container stmts and skip captured stmt at the top, if IgnoreCaptured is true.

const Stmt *

IgnoreContainers (bool IgnoreCaptured=false) const

const Stmt *

stripLabelLikeStatements () const

Strip off all label-like statements.

Stmt *

stripLabelLikeStatements ()

child_range

children ()

const_child_range

children () const

child_iterator

child_begin ()

child_iterator

child_end ()

const_child_iterator

child_begin () const

const_child_iterator

child_end () const

void

Profile (llvm::FoldingSetNodeID &ID, const ASTContext &Context, bool Canonical, bool ProfileLambdaExpr=false) const

Produce a unique representation of the given statement.

void

ProcessODRHash (llvm::FoldingSetNodeID &ID, ODRHash &Hash) const

Calculate a unique representation for a statement that is stable across compiler invocations.

Static Public Member Functions

static QualType

getBaseOriginalType (const Expr *Base)

Return original type of the base expression for array section.

static bool

classof (const Stmt *T)

- Static Public Member Functions inherited from clang::Expr

static ExprValueKind

getValueKindForType (QualType T)

getValueKindForType - Given a formal return or parameter type, give its value kind.

static bool

isPotentialConstantExpr (const FunctionDecl *FD, SmallVectorImpl< PartialDiagnosticAt > &Diags)

isPotentialConstantExpr - Return true if this function's definition might be usable in a constant expression in C++11, if it were marked constexpr.

static bool

isPotentialConstantExprUnevaluated (Expr *E, const FunctionDecl *FD, SmallVectorImpl< PartialDiagnosticAt > &Diags)

isPotentialConstantExprUnevaluated - Return true if this expression might be usable in a constant expression in C++11 in an unevaluated context, if it were in function FD marked constexpr.

static QualType

findBoundMemberType (const Expr *expr)

Given an expression of bound-member type, find the type of the member.

static bool

hasAnyTypeDependentArguments (ArrayRef< Expr * > Exprs)

hasAnyTypeDependentArguments - Determines if any of the expressions in Exprs is type-dependent.

static bool

isSameComparisonOperand (const Expr *E1, const Expr *E2)

Checks that the two Expr's will refer to the same value as a comparison operand.

static bool

classof (const Stmt *T)

- Static Public Member Functions inherited from clang::ValueStmt

static bool

classof (const Stmt *T)

- Static Public Member Functions inherited from clang::Stmt

static void

addStmtClass (const StmtClass s)

static void

EnableStatistics ()

static void

PrintStats ()

static Likelihood

getLikelihood (ArrayRef< const Attr * > Attrs)

static Likelihood

getLikelihood (const Stmt *S)

static const Attr *

getLikelihoodAttr (const Stmt *S)

static Likelihood

getLikelihood (const Stmt *Then, const Stmt *Else)

static std::tuple< bool, const Attr *, const Attr * >

determineLikelihoodConflict (const Stmt *Then, const Stmt *Else)

This class represents BOTH the OpenMP Array Section and OpenACC 'subarray', with a boolean differentiator.

OpenMP 5.0 [2.1.5, Array Sections]. To specify an array section in an OpenMP construct, array subscript expressions are extended with the following syntax:

[ lower-bound : length : stride ]

[ lower-bound : length : ]

[ lower-bound : : stride ]

[ lower-bound : : ]

[ lower-bound : ]

[ : : stride ]

[ : : ]

[ : ]

float __ovld __cnfn length(float)

Return the length of vector p, i.e., sqrt(p.x2 + p.y 2 + ...)

The array section must be a subset of the original array. Array sections are allowed on multidimensional arrays. Base language array subscript expressions can be used to specify length-one dimensions of multidimensional array sections. Each of the lower-bound, length, and stride expressions if specified must be an integral type expressions of the base language. When evaluated they represent a set of integer values as follows:

{ lower-bound, lower-bound + stride, lower-bound + 2 * stride,... ,

lower-bound + ((length - 1) * stride) }

The lower-bound and length must evaluate to non-negative integers. The stride must evaluate to a positive integer. When the size of the array dimension is not known, the length must be specified explicitly. When the stride is absent it defaults to 1. When the length is absent it defaults to ⌈(size − lower-bound)/stride⌉, where size is the size of the array dimension. When the lower-bound is absent it defaults to 0.

OpenACC 3.3 [2.7.1 Data Specification in Data Clauses] In C and C++, a subarray is an array name followed by an extended array range specification in brackets, with start and length, such as

AA[2:n]

If the lower bound is missing, zero is used. If the length is missing and the array has known size, the size of the array is used; otherwise the length is required. The subarray AA[2:n] means elements AA[2], AA[3], . . . , AA[2+n-1]. In C and C++, a two dimensional array may be declared in at least four ways:

-Statically-sized array: float AA[100][200]; -Pointer to statically sized rows: typedef float row[200]; row* BB; -Statically-sized array of pointers: float* CC[200]; -Pointer to pointers: float** DD;

Each dimension may be statically sized, or a pointer to dynamically allocated memory. Each of these may be included in a data clause using subarray notation to specify a rectangular array:

-AA[2:n][0:200] -BB[2:n][0:m] -CC[2:n][0:m] -DD[2:n][0:m]

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any combination of statically-sized or dynamically-allocated dimensions. For statically sized dimensions, all dimensions except the first must specify the whole extent to preserve the contiguous data restriction, discussed below. For dynamically allocated dimensions, the implementation will allocate pointers in device memory corresponding to the pointers in local memory and will fill in those pointers as appropriate.

In Fortran, a subarray is an array name followed by a comma-separated list of range specifications in parentheses, with lower and upper bound subscripts, such as

arr(1:high,low:100)

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, if known, are used. All dimensions except the last must specify the whole extent, to preserve the contiguous data restriction, discussed below.

Restrictions

-In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be specified.

-In C and C++, the length for dynamically allocated dimensions of an array must be explicitly specified.

-In C and C++, modifying pointers in pointer arrays during the data lifetime, either on the host or on the device, may result in undefined behavior.

-If a subarray appears in a data clause, the implementation may choose to allocate memory for only that subarray on the accelerator.

-In Fortran, array pointers may appear, but pointer association is not preserved in device memory.

-Any array or subarray in a data clause, including Fortran array pointers, must be a contiguous section of memory, except for dynamic multidimensional C arrays.

-In C and C++, if a variable or array of composite type appears, all the data members of the struct or class are allocated and copied, as appropriate. If a composite member is a pointer type, the data addressed by that pointer are not implicitly copied.

-In Fortran, if a variable or array of composite type appears, all the members of that derived type are allocated and copied, as appropriate. If any member has the allocatable or pointer attribute, the data accessed through that member are not copied.

-If an expression is used in a subscript or subarray expression in a clause on a data construct, the same value is used when copying data at the end of the data region, even if the values of variables in the expression change during the data region.

Definition at line 6986 of file Expr.h.