Локально компактное пространство | это... Что такое Локально компактное пространство? (original) (raw)
Локально компактное пространство
Локально компактное пространство
Компа́ктное простра́нство — это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие.
В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.
Содержание
Связанные определения
- Подмножество топологического пространства, являющееся в индуцированной топологии компактным пространством, называется компактным множеством.
- Множество называется относительно компактным или предкомпактным, если его замыкание компактно.
- Пространство называется секвенциально компактным, если из любой последовательности в нём можно выделить сходящуюся подпоследовательность.
- Локально компактное пространство — топологическое пространство, в котором любая точка имеет окрестность, замыкание которой компактно.
- Ограниченно компактное пространство — метрическое пространство, в котором все замкнутые шары компактны.
- Термин компакт иногда используется для метризуемого компактного пространства, но иногда просто как синоним к термину «компактное пространство».
Свойства
- Общие свойства:
- Для любого непрерывного отображения образ компакта — компакт.
- Замкнутое подмножество компакта компактно.
- Компактное подмножество хаусдорфова пространства замкнуто.
- Теорема Тихонова: произведение произвольного (необязательно конечного) множества компактных множеств (с топологией произведения) компактно .
- Любое непрерывное взаимно однозначное отображение компакта в хаусдорфово пространство является гомеоморфизмом.
- В компактных пространствах каждое центрированное семейство замкнутых множеств, т.е. семейство, в котором пересечения конечных подсемейств не пусты, имеет непустое пересечение. См. также Лемма о вложенных отрезках.
- Свойства компактных метрических пространств:
Примеры компактных множеств
История
Бикомпактное пространство — термин, введённый П. С. Александровым как усиление введённого М. Фреше понятия компактного пространства: топологическое пространство компактно — в первоначальном смысле слова — если в каждом счётном открытом покрытии этого пространства содержится его конечное подпокрытие. Однако дальнейшее развитие математики показало, что понятие бикомпактности настолько важнее первоначального понятия компактности, что в настоящее время под компактностью понимают именно бикомпактность, а компактные в старом смысле пространства называют счётно-компактными. Оба понятия равносильны в применении к метрическим пространствам.
Литература
- О. Я. Виро, О. А. Иванов, В. М. Харламов и Н. Ю. Нецветаев. Задачный учебник по топологии
- Л.Шварц, Анализ, т. I, М., МИР, 1972.
Wikimedia Foundation.2010.
Полезное
Смотреть что такое "Локально компактное пространство" в других словарях:
- Локально стягиваемое пространство — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
- Компактное пространство — определённый тип топологических пространств, включающий Все пространства с конечным числом точек; Все замкнутые и ограниченные подмножества евклидова пространства. В топологии компактные пространства по своим свойствам напоминают конечные… … Википедия
- Ограниченно компактное пространство — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
- ЛОКАЛЬНО ВЫПУКЛОЕ ПРОСТРАНСТВО — отделимое топологическое векторное пространство над полем действительных или комплексных чисел, в к ром любая окрестность нулевого элемента содержит выпуклую окрестность нулевого элемента; иначе говоря, топологическое векторное пространство… … Математическая энциклопедия
- Компактное множество — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
- ГАРМОНИЧЕСКОЕ ПРОСТРАНСТВО — топология, пространство X с пучком непрерывных действительных функций с аксиоматически фиксируемыми в той или иной форме тремя основными свойствами классических гармонических функций:свойство сходимости, выражаемое второй Гарнака теоремой;принцип … Математическая энциклопедия
- Относительно компактное множество — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
- Бикомпактное пространство — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
- Предкомпактное пространство — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
- ФИНСЛЕРОВО ПРОСТРАНСТВО ОБОБЩЕННОЕ — пространство с внутренней метрикой, подчиненное нек рым ограничениям на поведение кратчайших (т. е. кривых, длины к рых равны расстояниям между концами). К таким пространствам относятся G пространства (см. Геодезических геометрия )и, в частности … Математическая энциклопедия