Электромагнетизм | это... Что такое Электромагнетизм? (original) (raw)

Классическая электродинамика
Магнитное поле соленоида
Электричество · Магнетизм Электростатика Закон Кулона Теорема Гаусса Электрический дипольный момент Электрический заряд Электрическая индукция Электрическое поле Электростатический потенциал Магнитостатика Закон Био — Савара — Лапласа Закон Ампера Магнитный момент Магнитное поле Магнитный поток Электродинамика Диполь Потенциалы Лиенара — Вихерта Сила Лоренца Ток смещения Униполярная индукция Уравнения Максвелла Электрический ток Электродвижущая сила Электромагнитная индукция Электромагнитное излучение Электромагнитное поле Электрическая цепь Закон Ома Законы Кирхгофа Индуктивность Радиоволновод Резонатор Электрическая ёмкость Электрическая проводимость Электрическое сопротивление Электрический импеданс Ковариантная формулировка Тензор электромагнитного поля Тензор энергии-импульса 4-ток · 4-потенциал Известные учёные Генри Кавендиш Майкл Фарадей Андре-Мари Ампер Густав Роберт Кирхгоф Джеймс Клерк (Кларк) Максвелл Генри Рудольф Герц Альберт Абрахам Майкельсон Роберт Эндрюс Милликен

Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействии с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся через посредство электромагнитного поля, и, следовательно, также является предметом электродинамики.

Чаще всего под термином электродинамика по умолчанию понимается классическая (не затрагивающая квантовых эффектов) электродинамика; для обозначения современной квантовой теории электромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый термин квантовая электродинамика.

Основным содержанием классической электродинамики является описание свойств электромагнитного поля и его взаимодействия с заряженными телами (заряженные тела "порождают" электромагнитное поле, являются его "источниками", а электромагнитное поле в свою очередь действует на заряженные тела, создавая электромагнитные силы). Это описание, кроме определения основных объектов и величин, таких как электрический заряд, электрическое поле, магнитное поле, электромагнитный потенциал, сводится к уравнениям Максвелла в той или иной форме и формуле силы Лоренца, а также затрагивает некоторые смежные вопросы (относящиеся к математической физике, приложениям, вспомогательным величинам и вспомогательным формулам, важным для приложений, как например вектор плотности тока или эмпирический закона Ома). Также это описание включает вопросы сохранения и переноса энергии, импульса, момента импульса электромагнитным полем, включая формулы для плотности энергии, вектора Пойнтинга и т.п.

Иногда под электродинамическими эффектами (в противоположность электростатике) понимают те существенные отличия общего случая поведения электромагнитного поля (например, динамическую взаимосвязь между меняющимися электрическим и магнитным полем) от статического случая, которые делают частный статический случай гораздо более простым для описания, понимания и расчетов.

Свойства статического (не меняющегося со временем или меняющегося достаточно медленно, чтобы "электродинамическими эффектами" в описанном выше смысле можно было пренебречь) электрического поля и его взаимодействия с электрически заряженными телами (электрическими зарядами) описывает отдельный раздел физики — электростатика, хотя являющийся в принципе частным разделом электродинамики, но имеющий самостоятельное значение из-за сильного упрощения всех расчётов в этом случае.

Еще одним сходным частным случаем электродинамики является магнитостатика, исследующая постоянные токи и постоянные магнитные поля (поля не меняются во времени или меняются настолько медленно, что быстротой этих изменений в расчете можно пренебречь).

Электродинамика лежит в основе физической оптики, физики распространения радиоволн, а также пронизывает практически всю физику, так как почти во всех разделах физики приходится иметь дело с электрическими полями и зарядами, а часто и с их нетривиальными быстрыми изменениями и движениями. Кроме того, электродинамика является образцовой физической теорией (и в классическом и в квантовом своем варианте), сочетающей очень большую точность расчетов и предсказаний с влиянием теоретических идей, родившихся в ее области, на другие области теоретической физики.

Электродинамика имеет огромное значение в технике и лежит в основе: радиотехники, электротехники, различных отраслей связи и радио.

История

В 1832 году английский физик Майкл Фарадей теоретически предсказал существование электромагнитного излучения.

В 1864 году Дж. К. Максвелл впервые опубликовал полную основных уравнений «классической электродинамики», описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами.

В ? году Лоренц завершил построение классической электродинамики, описав взаимодействие электромагнитного поля с (движущимися) точечными заряженными частицами.

В середине XX века была создана квантовая электродинамика - одна из наиболее точных физических теорий.

См. также

Ссылки

Известные фундаментальные взаимодействия элементарных частиц и тел из них
Сильное взаимодействие · Электромагнитное взаимодействие · Слабое взаимодействие · Гравитация

Wikimedia Foundation.2010.