Закон Кулона | это... Что такое Закон Кулона? (original) (raw)
О законе сухого трения см. Закон Амонтона - Кулона
Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.
Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:
Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними
Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).
Важно отметить, что для того, чтобы закон был верен, необходимы:
- точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
- их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
- взаимодействие в вакууме.
Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[1]
В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:
где — сила, с которой заряд 1 действует на заряд 2;
— величина зарядов;
— радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами —
);
— коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые — притягиваются).
Содержание
- 1 Коэффициент k
- 2 Закон Кулона в квантовой механике
- 3 Закон Кулона с точки зрения квантовой электродинамики
- 4 История
- 5 Закон Кулона, принцип суперпозиции и уравнения Максвелла
- 6 Cтепень точности закона Кулона
- 7 Значение закона Кулона в истории науки
- 8 См. также
- 9 Ссылки
- 10 Примечания
- 11 Литература
Коэффициент k
В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.
В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10-7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:
где ≈ 8,854187817·10−12 Ф/м — электрическая постоянная.
В однородном изотропном веществе в знаменатель формулы добавляется относительная диэлектрическая проницаемость среды ε.
В СГСЭ
В СИ
Закон Кулона в квантовой механике
В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.[2]
Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:
.
Здесь m — масса электрона, е — его заряд, — абсолютная величина радиус-вектора _j_-го электрона,
. Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем N электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.[3]
Закон Кулона с точки зрения квантовой электродинамики
Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.[4][5]
История
Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил[6] Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.
В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил[7], что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение[8] о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества»[9] отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «электрическое притяжение следует точно такому же закону, как и тяготение, то есть квадрату расстояния». Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785)[10].
Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.[11]
Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.
Закон Кулона, принцип суперпозиции и уравнения Максвелла
Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и
. То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей[12].
Cтепень точности закона Кулона
Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника[13].
Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до [14].
Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9[15][16].
Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6[16].
Поправки к закону Кулона в квантовой электродинамике
На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.86·10−13 м [17], где
— масса электрона,
— постоянная Планка,
— скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка
в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда
в системе СГС, с учётом радиационных поправок первого порядка принимает вид [18]:
где — комптоновская длина волны электрона,
— постоянная тонкой структуры и
. На расстояниях порядка
~ 10−18 м, где
— масса W-бозона, в игру вступают уже электрослабые эффекты.
В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или
~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально[19].
Закон Кулона и поляризация вакуума
Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния
[20]. Эффективный потенциал, создаваемый электроном с электрическим зарядом
, можно описать зависимостью вида
. Эффективный заряд
зависит от расстояния
по логарифмическому закону:
где,
— т. н. постоянная тонкой структуры ≈7.3·10−3;
— т. н. классический радиус электрона ≈2.8·10−13 см.[21][22].
Эффект Юлинга
Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 мггц. [23][24]
Закон Кулона и сверхтяжелые ядра
В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона[25]
Значение закона Кулона в истории науки
Закон Кулона является первым открытым количественным и сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме[26].
См. также
- Электрическое поле
- Дальнодействие
- Закон Био — Савара — Лапласа
- Закон притяжения
- Кулон, Шарль Огюстен де
- Кулон (единица измерения)
- Принцип суперпозиции
- Уравнения Максвелла
Ссылки
- Закон Кулона (видеурок, программа 10 класса)
Примечания
- ↑ Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 2 Теория поля. — 8-е изд., стереот. — М.: ФИЗМАТЛИТ, 2001. — 536 с. — ISBN 5-9221-0056-4 (Т. 2), Гл. 5 Постоянное электромагнитное поле, п. 38 Поле равномерно движущегося заряда, с 132
- ↑ Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 3. Квантовая механика (нерелятивистская теория). — 5-е изд., стереот. — М.: Физматлит, 2002. — 808 с. — ISBN 5-9221-0057-2 (Т. 3), гл. 3 Уравнение Шредингера, п. 17 Уравнение Шредингера, с. 74
- ↑ Г. Бете Квантовая механика. — пер. с англ., под ред. В. Л. Бонч-Бруевича, «Мир», М., 1965, Часть 1 Теория строения атома, Гл. 1 Уравнение Шредингера и приближённые методы его решения, с. 11
- ↑ Р. Е. Пайерлс Законы природы. пер. с англ. под ред. проф. И. М. Халатникова, Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
- ↑ Л. Б. Окунь
… z Элементарное введение в физику элементарных частиц, М., Наука, 1985, Библиотечка «Квант», вып. 45, п. «Виртуальные частицы», с. 57.
- ↑ Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
- ↑ Эпинус Ф. Т. У. Теория электричества и магнетизма. — Л.: АН СССР, 1951. — 564 с. — (Классики науки). — 3000 экз.
- ↑ Abel Socin (1760) Acta Helvetiсa, vol. 4, pages 224-225.
- ↑ J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
- ↑ John Robison, A System of Mechanical Philosophy (London, England: John Murray, 1822), vol. 4. На стр. 68 Робисон заявляет, что в 1769 он обнародовал свои измерения силы, действующей между сферами с одинаковым зарядом, и описывает также историю исследований в этой области, отмечая имена Эпинуса, Кавендиша и Кулона. На стр. 73 автор пишет, что сила изменяется как _x_−2,06.
- ↑ С. Р. Филонович «Кавендиш, Кулон и электростатика», М., «Знание», 1988, ББК 22.33 Ф53, гл. «Судьба закона», с. 48
- ↑ Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
- ↑ Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106—108;
- ↑ E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721—724 (1971);
- ↑ W. E. Lamb, R. C. Retherford Fine Structure of the Hydrogen Atom by a Microwave Method (Английский) // Physical Review. — Т. 72. — № 3. — С. 241-243.
- ↑ 1 2 Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
- ↑ CODATA (the Committee on Data for Science and Technology)
- ↑ Берестецкий, В. Б., Лифшиц, Е. М., Питаевский, Л. П. Квантовая электродинамика. — Издание 3-е, исправленное. — М.: Наука, 1989. — С. 565-567. — 720 с. — («Теоретическая физика», том IV). — ISBN 5-02-014422-3
- ↑ Neda Sadooghi Modified Coulomb potential of QED in a strong magnetic field (Английский).
- ↑ Окунь Л. Б. «Физика элементарных частиц», изд. 3-е, М., «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
- ↑ «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
- ↑ Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
- ↑ Uehling E.A ., Phys. Rev., 48, 55, (1935)
- ↑ «Мезоны и поля» С. Швебер, Г. Бете, Ф. Гофман том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
- ↑ А. Б. Мигдал «Поляризация вакуума в сильных полях и пионная конденсация», «Успехи физических наук», т. 123, в. 3, 1977 г., ноябрь, с. 369—403;
- ↑ Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52-53;
Литература
- Филонович С. Р. Судьба классического закона. — М., Наука, 1990. — 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.