Вероятность | это... Что такое Вероятность? (original) (raw)
Простой пример: вероятность того, что на кубике выпадет число «5», равна
Вероя́тность (вероятностная мера) — численная мера возможности наступления некоторого события.
С практической точки зрения, _вероятность события_— это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. Такая трактовка допустима в случае достаточно большого количества наблюдений или опытов. Например, если среди встреченных на улице людей примерно половина — женщины, то можно говорить, что вероятность того, что встреченный на улице человек окажется женщиной, равна 1/2. Другими словами, оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента.
Согласно определению П. Лапласа, мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель — число всех равновозможных случаев[источник не указан 85 дней].
Вероятность в математике
В современном математическом подходе классическая (то есть не квантовая) вероятность задаётся аксиоматикой Колмогорова. Вероятностью называется мера P, которая задаётся на множестве X, называемом вероятностным пространством. Эта мера должна обладать следующими свойствами:
- ,
- ,
- Мера P обладает свойством счётной аддитивности (сигма-аддитивности): если множества _A_1, _A_2, …, An, … не пересекаются, то
Из указанных условий следует, что вероятностная мера P также обладает свойством аддитивности: если множества _A_1 и _A_2 не пересекаются, то . Для доказательства нужно положить все _A_3, _A_4, … равными пустому множеству и применить свойство счётной аддитивности.
Вероятностная мера может быть определена не для всех подмножеств множества X. Достаточно определить её на сигма-алгебре , состоящей из некоторых подмножеств множества X. При этом случайные события определяются как измеримые подмножества пространства X, то есть как элементы сигма-алгебры .
Вероятность смысле
Когда мы находим, что основания для того, чтобы какой-нибудь возможный факт произошел в действительности, перевешивают противоположные основания, мы считаем этот факт вероятным, в противном случае — невероятным. Этот перевес положительных оснований над отрицательными, и наоборот, может представлять неопределённое множество степеней, вследствие чего вероятность (и невероятность) бывает большею или меньшею[1].
Сложные единичные факты не допускают точного вычисления степеней своей вероятности, но и здесь важно бывает установить некоторые крупные подразделения. Так, например, в области юридической, когда подлежащий суду личный факт устанавливается на основании свидетельских показаний, он всегда остаётся, строго говоря, лишь вероятным, и необходимо знать, насколько эта вероятность значительна; в римском праве здесь принималось четверное деление: probatio plena (где вероятность практически переходит в достоверность), далее — probatio minus plena, затем — probatio semiplena major и, наконец, probatio semiplena minor[1].
Кроме вопроса о вероятности дела, может возникать, как в области права, так и в области нравственной (при известной этической точке зрения) вопрос о том, насколько вероятно, что данный частный факт составляет нарушение общего закона. Этот вопрос, служащий основным мотивом в религиозной юриспруденции Талмуда, вызвал и в римско-католическом нравственном богословии (особенно с конца XVI века) весьма сложные систематические построения и огромную литературу, догматическую и полемическую (см. Пробабилизм)[1].
Понятие вероятности допускает определенное численное выражение в применении лишь к таким фактам, которые входят в состав определенных однородных рядов. Так (в самом простом примере), когда кто-нибудь бросает сто раз кряду монету, мы находим здесь один общий или большой ряд (сумма всех падений монеты), слагающийся из двух частных или меньших, в данном случае численно равных, рядов (падения «орлом» и падения «решкой»); Вероятность, что в данный раз монета упадет решкой, то есть что этот новый член общего ряда будет принадлежать к этому из двух меньших рядов, равняется дроби, выражающей численное отношение между этим малым рядом и большим, именно 1/2, то есть одинаковая вероятность принадлежит к тому или другому из двух частных рядов. В менее простых примерах заключение не может быть выведено прямо из данных самой задачи, а требует предварительной индукции. Так, например, спрашивается: какая вероятность существует для данного новорожденного дожить до 80 лет? Здесь должно составить общий, или большой, ряд из известного числа людей, рожденных в подобных же условиях и умирающих в различном возрасте (это число должно быть достаточно велико, чтобы устранить случайные отклонения, и достаточно мало, чтобы сохранялась однородность ряда, ибо для человека, рождённого, например, в Санкт-Петербурге в обеспеченном культурном семействе, всё миллионное население города, значительная часть которого состоит из лиц разнообразных групп, могущих умереть раньше времени — солдат, журналистов, рабочих опасных профессий, — представляет группу слишком разнородную для настоящего определения вероятности); пусть этот общий ряд состоит из десяти тысяч человеческих жизней; в него входят меньшие ряды, представляющие число доживающих до того или другого возраста; один из этих меньших рядов представляет число доживающих до 80 лет. Но определить численность этого меньшего ряда (как и всех других) невозможно a priori; это делается чисто индуктивным путем, посредством статистики. Положим, статистические исследования установили, что из 10000 петербуржцев среднего класса до 80 лет доживают только 45; таким образом, этот меньший ряд относится к большому, как 45 к 10000, и вероятность для данного лица принадлежать к этому меньшему ряду, то есть дожить до 80 лет, выражается дробью 0,0045. Исследование вероятности с математической точки зрения составляет особую дисциплину — теорию вероятностей[1].
См. также
- Риск
- Формула полной вероятности
- Формула Бернулли
- Условная вероятность
- Случайная величина
- Случайность
- Измерение (квантовая механика)
- Квантовая вероятность
- Вероятность перехода
- Парадокс закономерности
Примечания
- ↑ 1 2 3 4 В. С. Соловьёв Вероятность // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
Литература
- Альфред Реньи. Письма о вероятности / пер. с венг. Д.Сааса и А.Крамли под ред. Б. В. Гнеденко. М.: Мир. 1970
- Гнеденко Б. В. Курс теории вероятностей. М., 2007. 42 с.
- Купцов В. И. Детерминизм и вероятность. М., 1976. 256 с.