Диод | это... Что такое Диод? (original) (raw)

У этого термина существуют и другие значения, см. Диод (значения).

Четыре диода и диодный мост.

Дио́д (от др.-греч. δις[1] — два и -од[2] означающего путь) — двухэлектродный электронный прибор, обладающий различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключаемый к отрицательному полюсу — катодом.

Содержание

История создания и развития диодов

Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году британский учёный Фредерик Гутри открыл принцип действия термионных (вакуумных ламповых с прямым накалом) диодов, в 1874 году германский учёный Карл Фердинанд Браун открыл принцип действия кристаллических (твёрдотельных) диодов. Позже был открыт принцип работы полупровдниковых диодов русским математиком и физиком Шинкаренко Валерием Геннадьевичем.

Принципы работы термионного диода были заново открыты 13 февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы (патент США № 307031). Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году германский учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле[4]. Джэдиш Чандра Боус развил далее открытие Брауна в устройство применимое для детектирования радио. Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) 16 ноября 1904 года (патент США № 803684 от ноября 1905 года). 20 ноября 1906 года Пикард запатентовал кремниевый кристаллический детектор (патент США № 836531).

В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Иклс ввёл в оборот слово «диод», образованное от греческих корней «di» — два, и «odos» — путь[2].

Ключевую роль в разработке первых отечественных полупроводниковых диодов в 1930-х годах сыграл советский физик Б. М. Вул.

Типы диодов

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

| | | Диоды | | | | | | | | | | | | | | | | ---------------------------- | ----- | | | | | -------------------- | --------------- | | ------------------- | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Полупроводниковые | | | | | | Не полупроводниковые | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Газозаполненные | | Вакуумные | | | | | | |

Полупроводниковые диоды

Полупроводниковый диод в стеклянном корпусе. На фотографии виден полупроводник с контактами, подходящими к нему.

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом (Диод Шоттки).

Ламповые диоды

Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается нитью накала. Благодаря этому, часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если же поле направлено в противоположную сторону, электрическое поле препятствует этим электронам и тока (практически) нет.

Специальные типы диодов

Светодиод ультрафиолетового спектра излучения (увеличен).

Классификация и система обозначений

Классификация диодов по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, роду исходного материала (полупроводника) отображается системой условных обозначений их типов. Система условных обозначений постоянно совершенствуется в соответствии с возникновением новых классификационных групп и типов диодов. Обычно системы обозначений представлены буквенно-цифровым кодом.

СССР

На территории СССР система условных обозначений неоднократно претерпевала изменения и до настоящего времени на радиорынках можно встретить полупроводниковые диоды, выпущенные на заводах СССР и с системой обозначений согласно отраслевого стандарта ОСТ 11 336.919-81, базирующегося на ряде классификационных признаков изделий[3]. Итак,

  1. первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:
  2. второй элемент — буквенный индекс, определяющий подкласс приборов;
  3. третий элемент — цифра (или в случае оптопар — буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);
  4. четвёртый элемент — число, обозначающее порядковый номер разработки технологического типа изделия;
  5. пятый элемент — буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.

Кроме того, система обозначений предусматривает (в случае необходимости) введение в обозначение дополнительных знаков для выделения отдельных существенных конструктивно-технологических особенностей изделий.

Россия

Продолжает действовать ГОСТ 2.730-73 — приборы полупроводниковые. Условные обозначения графические.

Импортные радиодетали

Существует ряд общих принципов стандартизации системы кодирования для диодов за рубежом — наиболее распространены EIA/JEDEC и европейский Pro Electron стандарты.

EIA/JEDEC

Стандартизированная система EIA370 нумерации 1N-серии была введена в США EIA/JEDEC (Объединенный Инженерный Консилиум по Электронным Устройствам) приблизительно в 1960 году. Среди самого популярного в этой серии были: 1N34A/1N270 (германиевый), 1N914/1N4148 (кремниевый), 1N4001—1N4007 (кремниевый выпрямитель 1A) и 1N54xx (мощный кремниевый выпрямитель 3A)[5][6][7].

Pro Electron

Дополнительные сведения: Pro Electron

Согласно европейской системы обозначений активных компонентов Pro Electron, введенной в 1966 году и состоящей из двух букв и числового кода:

  1. первая буква обозначает материал полупроводника:
  2. вторая буква обозначает подкласс приборов:
    • A — сверхвысокочастотные диоды;
    • Bварикапы;
    • X — умножители напряжения;
    • Y — выпрямительные диоды;
    • Zстабилитроны, например:

Другие

Другие распространённые системы нумерации/кодирования (обычно производителем), включают:

Система JIS маркирует полупроводниковые диоды, начинаясь с «1S».

Кроме того, многие производители или организации имеют свои собственные системы общей кодировки, например:

Применение диодов

Диодные выпрямители

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (То есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме Ларионова А. Н. на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою.

В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.

Если соединено последовательно и согласно(в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.

Диодные детекторы

Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются в радиоприёмных устройствах: радиоприёмниках, телевизорах и т.п. Используется квадратичный участок вольт-амперной характеристики диода.

Диодная защита

Диоды применяются для защиты устройств от неправильной полярности включения, защиты входов схем от перегрузки, защиты ключей от пробоя ЭДС самоиндукции, возникающей при выключении индуктивной нагрузки и т. п.

Два входа защищены диодными цепочками. Внизу — трёхвыводная защитная диодная сборка в сравнении со спичечной головкой

Для защиты входов аналоговых и цифровых схем от перегрузки используется цепочка из двух диодов, подключенных к шинам питания в обратном направлении, защищаемый вход подключается к средней точке этой цепочки. При нормальной работе диоды закрыты и почти не оказывают влияния на работу схемы. При уводе потенциала входа за пределы питающего напряжения один из диодов открывается и шунтирует вход схемы, ограничивая таким образом допустимый потенциал входа диапазоном в пределах питающего напряжения плюс прямое падение напряжения на диоде. Такие цепочки могут быть уже включены в состав ИС на этапе проектирования кристалла, либо предусматриваться при разработке схем узлов, блоков, устройств. Выпускаются готовые защитные сборки из двух диодов в трёхвыводных «транзисторных» корпусах.

Для сужения или расширения диапазона защиты вместо потенциалов питания необходимо использовать другие потенциалы в соответствии с требуемым диапазоном. При защите от мощных помех, возникающих на длинных проводных линиях, например, при грозовых разрядах, может потребоваться использование более сложных схем, вместе с диодами включающих в себя резисторы, варисторы, разрядники[8][9].

Диодная защита ключа, коммутирующего индуктивную нагрузку

При выключении индуктивных нагрузок (таких как реле, электромагниты, магнитные пускатели, электродвигатели) возникает ЭДС самоиндукции:

\mathcal{E}_{i}=-L\frac{dI}{dt},

где L — индуктивность, I — ток через индуктивность, t — время.

ЭДС самоиндукции препятствует уменьшению силы тока через индуктивность и «стремится» поддержать ток на прежнем уровне. При выключении тока энергия магнитного поля, созданного индуктивностью, должна где-то рассеяться. Магнитное поле, создаваемое индуктивной нагрузкой, обладает энергией:

W = \frac{LI^2}{2},

где L — индуктивность I — ток через индуктивность,.

Таким образом, после отключения индуктивность сама становится источником тока и напряжения, а возникающее на закрытом ключе напряжение может достигать высоких значений и приводить к искрению и обгоранию контактов механических и пробою полупроводниковых ключей поскольку в этих случаях энергия будет рассеиваться непосредственно на само́м ключе. Диодная защита является простой и одной из широко распространённых схем, позволяющих защитить ключи с индуктивной нагрузкой. Диод включается параллельно катушке так, что в рабочем состоянии диод закрыт. При отключении тока возникающая ЭДС самоиндукции направлена против ранее приложенного к индуктивности напряжения, эта противо-ЭДС открывает диод, ранее шедший через индуктивность ток продолжает течь через диод и энергия магнитного поля рассеется на нём, не вызывая повреждения ключа.

В схеме защиты с одним только диодом напряжение на катушке будет равным падению напряжения на диоде в прямом направлении — порядка 0,7–1,2 В, в зависимости от величины тока. Из-за малости этого напряжения ток будет спадать довольно медленно и для ускорения выключения нагрузки может потребоваться использование более сложной защитной схемы: стабилитрон последовательно с диодом, диод в комбинации с резистором, варистором или резисторно-ёмкостной цепочкой[10].

Диодные переключатели

Применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Этим не исчерпывается применение диодов в электронике, однако другие схемы, как правило, весьма узкоспециальны. Совершенно другую область применимости имеют специальные диоды, поэтому они будут рассмотрены в отдельных статьях.

Интересные факты

Примечания

  1. Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5
  2. 1 2 www.yourdictionary.com: суффикс -од (ode) (англ.)
  3. 1 2 А. В. Баюков, А. Б. Гитцевич, А. А. Зайцев и др. Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы. Справочник / Под ред. Н. Н. Горюнова. — 2-е изд., перераб. — М.: Энергоатомиздат, 1984. — С. 13—31. — 744 с., ил с. — 100 000 экз.
  4. Diode
  5. About JEDEC. Jedec.org. Архивировано из первоисточника 5 августа 2012. Проверено 22 сентября 2008.
  6. EDAboard.com. News.elektroda.net (10 июня 2010). Архивировано из первоисточника 5 августа 2012. Проверено 6 августа 2010.
  7. I.D.E.A Transistor Museum Construction Projects Point Contact Germanium Western Electric Vintage Historic Semiconductors Photos Alloy Junction Oral History. Semiconductormuseum.com. Архивировано из первоисточника 5 августа 2012. Проверено 22 сентября 2008.
  8. Классификация и испытание грозозащит (рус.). «Сетевые решения», издательство «Нестор» (15 апреля 2004). — (Защита оборудования Ethernet). Архивировано из первоисточника 30 мая 2012. Проверено 27 апреля 2012.
  9. Некоторые вопросы использования газоразрядных приборов для защиты линий Ethernet (рус.). «Сетевые решения», издательство «Нестор» (12 мая 2008). Архивировано из первоисточника 30 мая 2012. Проверено 27 апреля 2012.
  10. Барнс Дж. Электронное конструирование: Методы борьбы с помехами = John R. Barnes. Electronic System Design: Interference And Noise Control Techniques. — Prentice-Hall, 1987. — Пер. с англ. — М.: Мир, 1990. — С. 78–85. — 238 с. — 30 000 экз. — ISBN 5-03-001369-5 (рус.), ISBN 0-13-252123-7 (англ.)

См. также

Ссылки

wikt: Диод в Викисловаре?
commons: Диод на Викискладе?