Импульсный стабилизатор напряжения | это... Что такое Импульсный стабилизатор напряжения? (original) (raw)
Импульсный стабилизатор напряжения — это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме[1], то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения — с минимальным сопротивлением, а значит может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.
Содержание
- 1 Разновидности
- 2 Принцип действия
- 3 Диапазон частот
- 4 Преобразователи на основе дросселя
- 5 Другие разновидности
- 6 Особенности использования
- 7 Достоинства вторичных источников питания с импульсной стабилизацией
- 8 Недостатки
- 9 Примечания
- 10 Литература
- 11 См. также
- 12 Ссылки
Разновидности
По соотношению входного и выходного напряжения
- Понижающие
- Повышающие
- С произвольным изменением напряжения
- Инвертирующие
По типу ключевого элемента
Интегрирующим элементом может быть
В зависимости от режима работы могут быть стабилизаторы
- на основе широтно-импульсной модуляции
- двухпозиционные (или релейные)
Принцип действия
Важнейшими элементами импульсного источника питания являются ключ — устройство, способное за короткое время изменить сопротивление прохождению тока с минимального на максимальное, и наоборот, и интегратор, напряжение на котором не может измениться мгновенно, а плавно растёт по мере накопления им энергии и так же плавно падает по мере отдачи её в нагрузку. Простейшим примером такого элемента может служить конденсатор, перед которым включено некоторое ненулевое сопротивление (в качестве которого может служить, к примеру, внутреннее сопротивление источника питания)[замечание 1].
Примечание
- ↑ Конденсатор взят для наглядности, но в реальных схемах КПД такого преобразователя мал, и не превышает КПД линейных регуляторов, т.к. много энергии рассеивается на упомянутом сопротивлении, или излучается в виде электромагнитной энергии (см. "Two Capacitors Paradox"). Схемы, позволяющие достичь более высокого КПД описаны ниже.
Ключевой с триггером Шмитта
Несколько иначе устроен ключевой стабилизатор напряжения с триггером Шмитта (называемый также релейным или стабилизатором с двухпозиционным регулированием[2]). В нём, при замкнутом ключе (1), входное напряжение поступает через ключевой элемент на накопитель (2), а выходное напряжение сравнивается с минимально допустимым напряжением и максимально допустимым напряжением в компараторе (4), который является входной составной частью инвертирующего триггера Шмитта (4)-(3). Как только выходное напряжение превышает максимально допустимое напряжение Umax, инвертирующий триггер Шмитта переключается в "0" и закрывает ключ (1). Накопитель разряжается, пока напряжение на нём не упадёт ниже минимально допустимого напряжения Umin, после чего инвертирующий триггер Шмитта переключается в "1", ключ снова открывается и процесс повторяется.
В середине диапазона стабилизации от Umin до Umax состояние ключа не изменяется.
Напряжения сравнения Umin и Umax формируются из опорного напряжения (5), при применении простого триггера Шмитта без обратной связи простыми делителями напряжения, а при применении более сложного триггера Шмитта с обратной связью более сложными для расчёта Umin и Umax цепями.
Такой стабилизатор прост по конструкции, частота замыкания/размыкания ключа в нём определяется суммой постоянных времени заряда и разряда накопителя (объекта управления) и разницей между максимально допустимым и минимально допустимым напряжениями и, при постоянной нагрузке, постоянна.
При двухпозиционном регулировании возможно использование не всех видов преобразований: например, невозможно использование описанного ниже повышающего преобразователя.
Ключевой с широтно-импульсной модуляцией
Функциональная схема ключевого стабилизатора напряжения с ШИМ
На рисунке изображена функциональная схема ключевого стабилизатора напряжения с широтно-импульсной модуляцией (ШИМ).
Когда ключ (1) замкнут, входное напряжение Ui через ключ поступает на интегратор (2). Интегратор накапливает энергию, подаваемую с ключа и отдаёт её в нагрузку, когда ключ разомкнут. В результате на выходе имеем усреднённое значение напряжения, которое зависит от входного напряжения и скважности импульсов, зависящей от частоты генератора и ёмкости конденсатора. Вычитатель-усилитель на операционном усилителе (4) вычитает из выходного напряжения напряжение сравнения (6) и усиливает разность. Усиленная разница поступает на модулятор (3). В модуляторе компаратор преобразует импульсы генератора (5) в прямоугольные импульсы, отклонение скважности которых от среднего значения, равного 2, пропорционально разности между выходным напряжением и напряжением сравнения. Поэтому, ключевой стабилизатор напряжения с ШИМ, при малых отклонениях выходного напряжения от напряжения сравнения работает как пропорциональный регулятор (П-регулятор). Обычно генератор выдаёт треугольные или пилообразные импульсы, которые преобразуются в прямоугольные с помощью порогового элемента с регулируемым порогом срабатывания (компаратора). Прямоугольные импульсы с выхода модулятора управляют замыканием и размыканием ключа (1).
При малых отклонениях выходного напряжения от напряжения сравнения скважность близка к 2, а частота работы ключа близка к частоте генератора модулятора. Ключ (транзистор) работает в наиболее благоприятном частотном режиме.
При больших отклонениях выходного напряжения от напряжения сравнения скважность приближается к или к , эквивалентная частота работы ключа в начале периода или в конце периода приближается к , ключ (транзистор) работает в наихудшем частотном режиме, в котором чаще всего и выходит из строя, затем ключ (транзистор) переходит в благоприятные, полностью открытое или в полностью закрытое состояние.
Диапазон частот
В отличие от блоков питания с сетевым трансформатором, импульсные блоки питания могут работать при достаточно высокой частоте преобразования. Повышение частоты позволяет уменьшить габариты и массу устройства. С верхней стороны диапазон частот преобразователей ограничивается требованиями ограничения источников помех для работы радиочастотной аппаратуры.
Обычно диапазон частот преобразователей составляет 20..80 кГц. При выборе частоты работы ключевых и ШИМ-стабилизаторов необходимо учитывать высшие гармоники токов.
Преобразователи на основе дросселя
Стабилизаторы с ёмкостным накопителем не получили широкого распространения, так как они хорошо работают только при достаточно большом внутреннем сопротивлении первичного источника. Такая ситуация возникает достаточно редко, т. к. внутреннее сопротивление источников питания стараются уменьшить, для отдачи большей мощности в нагрузку и меньших потерь энергии в источнике (например, внутреннее сопротивление бытовой сети электроснабжения в жилых помещениях составляет обычно от 0,05 Ом до 1 Ом). При работе от источника с маленьким внутренним сопротивлением в качестве накопителя энергии целесообразно использовать дроссель, либо более сложные комбинации дросселей и конденсаторов. Рассмотрим некоторые простые разновидности преобразователя.
Преобразователь с понижением напряжения
Кроме ключа S и дросселя L содержит диод D и конденсатор C. Когда ключ S замыкается, ток от источника течёт через дроссель L и нагрузку. ЭДС самоиндукции дросселя приложена обратно напряжению источника тока. В результате напряжение на нагрузке равно разности напряжения источника питания и ЭДС самоиндукции дросселя, ток через дроссель растёт, как и напряжение на конденсаторе C и нагрузке. При разомкнутом ключе S ток продолжает протекать через дроссель в том же направлении через диод D и нагрузку, а также конденсатор C. ЭДС самоиндукции приложена к нагрузке R через диод D, ток через дроссель постепенно уменьшается, как и напряжение на конденсаторе C и на нагрузке[3].
Преобразователь с повышением напряжения
В этом преобразователе ключ установлен после дросселя. Когда ключ замкнут, ток от источника протекает через дроссель L, ток через него увеличивается, в нём накапливается энергия. При размыкании ключа ток от источника течёт через дроссель L, диод D и нагрузку. Напряжение источника и ЭДС самоиндукции дросселя приложены в одном направлении и складываются на нагрузке. Ток постепенно уменьшается, дроссель отдаёт энергию в нагрузку. Пока ключ замкнут, нагрузка питается напряжением конденсатора C. Диод D не даёт ему разрядиться через ключ S[4].
Возможно также совмещение этой схемы с предыдущей, что позволяет произвольно изменять величину выходного напряжения: как повышать, так и понижать. Для этого перед дросселем устанавливаются диод и ключ, как в предыдущей схеме.
Инвертирующий преобразователь
В нём дроссель подключен параллельно источнику и нагрузке. Когда ключ S замкнут, ток от источника течёт через дроссель и быстро растёт. Когда ключ размыкается, ток продолжает течь через нагрузку R и диод D. ЭДС самоиндукции дросселя приложена в обратную сторону, по сравнению с напряжением источника. Поэтому напряжение к нагрузке также приложено в обратном направлении. Когда ключ S замкнут — диод D закрывается, а нагрузка питается зарядом конденсатора C[5].
Во всех трёх схемах диод D может быть заменён на ключ[6], замыкаемый в противофазе к основному ключу. Во многих случаях, особенно в низковольтных стабилизаторах, это позволяет увеличить КПД. Такую схему называют синхронным выпрямителем см. синхронное выпрямление (англ.)
Другие разновидности
Существуют другие разновидности импульсных преобразователей напряжения, использующихся в стабилизаторах. Например, такие преобразователи, как Обратноходовый преобразователь и Двухтактный преобразователь имеют индуктивную развязку выходных цепей, что позволяет питать с их помощью устройства, для которых недопустима гальваническая связь с питающей сетью.
Резонансный преобразователь имеет наилучшие условия работы ключей, что позволяет строить на его основе преобразователи большой мощности (до десятков киловатт) с достаточно высоким КПД.[7][8] Однако его недостатком является сложность проектирования, что мешает его широкому распространению.
Квазирезонансный преобразователь обладает значительно более высоким КПД по сравнению с широтно-импусными модуляторами, благодаря чему обеспечивается минимальное энергопотребление в дежурном режиме и низкое тепловыделение в рабочем. Выходное напряжение БП регулируется за счет изменения частоты работы преобразователя.[9]
Особенности использования
Импульсный блок питания компьютера (ATX) со снятой крышкой
A — входной выпрямитель. Ниже виден входной фильтр;
B — входные сглаживающие конденсаторы. Правее виден радиатор высоковольтных транзисторов;
C — импульсный трансформатор. Правее виден радиатор низковольтных диодов;
D — катушка выходного фильтра (дроссель групповой стабилизации);
E — конденсаторы выходного фильтра.
Катушка и большой жёлтый конденсатор, расположенные ниже E, являются элементами дополнительного входного фильтра, смонтированного непосредственно на разъёме питания, и не являющегося частью основной печатной платы.
Фильтрация импульсных помех
Импульсный стабилизатор напряжения является источником высокочастотных помех в связи с тем, что содержит ключи, коммутирующие ток[10]. Сложно подобрать такой режим работы ключей, чтобы коммутация происходила в моменты, когда через ключ не протекает ток при размыкании, или на ключе нулевое напряжение при замыкании. Поэтому в моменты коммутации возникают довольно значительные броски напряжения и тока, распространяющиеся как на вход, так и на выход стабилизатора. Для поглощения помех помехоподавляющие фильтры устанавливаются как на входе, так и на выходе стабилизатора.
Использование в сетях переменного тока
Рассмотренные импульсные преобразователи напряжения преобразуют постоянный ток на входе в постоянный ток на выходе. Для питания устройств от сети переменного тока необходимо устанавливать на входе выпрямитель и сглаживающий фильтр. Стоит отметить, что импульсный стабилизатор напряжения под нагрузкой имеет отрицательное дифференциальное сопротивление: при повышении напряжения на входе для сохранения выходного напряжения уменьшается входной ток, и наоборот. Если подключить такой стабилизатор через мостовой выпрямитель в сеть переменного тока, он станет источником нечётных гармоник[11]. Поэтому, чтобы обеспечить достаточный коэффициент мощности, требуется компенсатор.
Гальваническая развязка
Стоит отметить некоторые особенности импульсных стабилизаторов с точки зрения гальванической развязки цепей:
- Существование импульсных преобразователей напряжения с гальванической развязкой позволяет отказаться от низкочастотного сетевого трансформатора — необходимую гальваническую развязку будет осуществлять высокочастотный трансформатор, который работает на частоте десятков-сотен килогерц, и следовательно его габариты значительно меньше, чем обычного силового сетевого трансформатора работающего на промышленной частоте 50 Гц.
- Озвученное выше решение предполагает наличие относительно большого количества элементов, установленных до развязывающего трансформатора, а значит гальванически связанных с входными цепями. Эта часть, гальванически связанная с электрической сетью, обычно выделяется на платах либо штриховкой, либо чертой на слое сеткографической маркировки, или даже особой окраской, которая предупреждает человека о потенциальной опасности прикосновения к частям, расположенным в ней. Импульсные блоки питания в составе других приборов (телевизоров, компьютеров) закрываются защитными крышками, снабжёнными предупреждающими надписями. Если при ремонте импульсного блока питания необходимо включить его со снятой крышкой, рекомендуется включать его через развязывающий трансформатор или УЗО.
- Обратная связь в импульсных стабилизаторах также требует развязки. Для этой цели применяют либо отдельную обмотку на трансформаторе, с которой снимается напряжение для сравнения с опорным, либо напряжение снимается с выхода блока питания, а развязка управляющих цепей осуществляется с помощью оптрона.
- Часто помехоподавляющие фильтры на входе импульсных блоков питания соединяются с корпусом прибора. Это делается в том случае, если предполагается подключение защитного заземления корпуса. Если защитным заземлением пренебрегли, то на корпусе прибора образуется потенциал относительно земли равный половине сетевого напряжения. Конденсаторы фильтров, как правило, имеют небольшую ёмкость, поэтому прикосновение к корпусу такого прибора неопасно для человека, но одновременное прикосновение чувствительными частями тела к заземленным приборам и к незаземленному корпусу ощутимо (говорят, что прибор "кусается"). Кроме того потенциал на корпусе может быть опасен для самого прибора.
Достоинства вторичных источников питания с импульсной стабилизацией
- Возможность достичь высокого коэффициента стабилизации;
- Высокий КПД;
- Большой диапазон входных напряжений, нередко с более чем двукратным перекрытием: типичные значения без переключения и без значительного ухудшения КПД для распространённых схем составляют 18...75 В пост. тока, или 90...260 В переменного тока;
- Нечувствительность к частоте входного напряжения переменного тока, влияющей только на работу входного выпрямителя и фильтра;
- Нечувствительность к качеству электропитания (к примеру, наличию гармонических составляющих переменного тока);
- Лёгкость в дистанционном управлении и отключении;
- Малые габариты и масса;
- В общем случае, меньшая стоимость.
Недостатки
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 11 января 2012. |
---|
- Импульсные помехи. В связи с этим недопустимо применение низкочастотных импульсных БП для некоторых видов аппаратуры (напр., УМЗЧ);
- Невысокий cosφ, что требует включения компенсаторов коэффициента мощности;
- Меньшая надёжность, обусловленная как сложностью схемы, так и режимом работы ключевых элементов (высокое напряжение, большие мгновенные токи, большое число переключений за период эксплуатации, тяжёлый температурный режим кристалла диода или транзистора);
- Трудность самостоятельной настройки или ремонта, обязательно требующая специальных навыков;
- Тяжесть последствий при выходе из строя ключевых элементов;
- Меньшее время наработки на отказ;
- В случае их наличия, (цитата) «Сердечники из распылённого железа содержат органический диэлектрик, вследствие чего подвержены термическому старению» [12]
Примечания
- ↑ ГОСТ 23413-79 Средства вторичного электропитания радиоэлектронной аппаратуры. Термины и определения
- ↑ В.В. Китаев и др Электропитание устройств связи. — М.: Связь, 1975. — С. 196—207. — 328 с. — 24 000 экз.
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Основные импульсные схемы — Понижающий преобразователь — Стр. 128
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Основные импульсные схемы — Повышающий преобразователь — Стр. 129
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Основные импульсные схемы — Инвертирующий повышающий преобразователь — Стр. 130
- ↑ Как, например, в микросхеме TPS54616.
- ↑ Источники питания — Раздел 16. Импульсные источники питания — Схемы управления — Резонансные контроллеры, стр. 145 //issh.ru
- ↑ Авторская страница Б. Ю. Семенова
- ↑ квазирезонансный преобразователь STR-S6707, включает в себя задающий генератор, схему запуска, схемы защиты от перегрузки, перенапряжения, перегрева, а также выходной каскад на мощном биполярном транзисторе.
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Первичный источник питания — Подавление радиопомех — Стр. 147
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Первичный источник питания — Компенсация коэффициента мощности — Стр. 149
- ↑ Сердечники из распылённого железа (IronPowder)
Литература
- Вересов Г.П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
- В.Е. Китаев и др Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
- Костиков В.Г. Парфенов Е.М. Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3
См. также
Ссылки
Импульсный стабилизатор напряжения на Викискладе? |
---|
- [{{{5}}} ГОСТ Р 52907-2008 ] «Источники электропитания радиоэлектронной аппаратуры. Термины и определения»
- Простой ключевой стабилизатор напряжения
- Повышающий стабилизатор напряжения 5 В с накачкой заряда на микросхеме LTC3200-5
- Подробный разбор работы блока питания на ШИМ преобразовании.
- Схемотехника однофазных корректоров коэффициента мощности
- Проблемы высших гармоник в современных системах электропитания
- БЛОК ПИТАНИЯ: импульсный или линейный? ЗА и ПРОТИВ
- Импульсные источники питания на issh.ru
- Исследование астатического импульсного стабилизатора постоянного напряжения