Стоячая волна | это... Что такое Стоячая волна? (original) (raw)
Стоячая волна (чёрная) изображена в виде суммы двух волн (красная и синяя), распространяющихся в противоположных направлениях. Красные точки обозначают узлы
Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.
Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе[1]; в природе — волны Шумана.
Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде[2] и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.
Для демонстрации стоячих волн в газе используют трубу Рубенса.
В случае гармонических колебаний в одномерной среде стоячая волна описывается формулой:
,
где u — возмущения в точке х в момент времени t, — амплитуда стоячей волны, — частота , k — волновой вектор, — фаза.
Стоячие волны являются решениями волновых уравнений. Их можно представить себе как суперпозицию волн, распространяющихся в противоположных направлениях.
При существовании в среде стоячей волны, существуют точки, амплитуда колебаний в которых равна нулю. Эти точки называются узлами стоячей волны. Точки, в которых колебания имеют максимальную амплитуду, называются пучностями.
Содержание
- 1 Моды
- 2 Математическое описание стоячих волн
- 3 Волновое уравнение
- 4 См. также
- 5 Примечания
- 6 Ссылки
Моды
Стоячие волны возникают в резонаторах. Конечные размеры резонатора накладывают дополнительные условия на существование таких волн. В частности, для систем конечных размеров волновой вектор (а, следовательно, длина волны) может принимать лишь определенные дискретные значения. Колебания с определенными значениями волнового вектора называются модами.
Например, различные моды колебаний зажатой на концах струны определяют её основной тон и обертоны.
Математическое описание стоячих волн
В одномерном случае две волны одинаковой частоты, длины волны и амплитуды, распространяющиеся в противоположных направлениях (например, навстречу друг другу), будут взаимодействовать, в результате чего может возникнуть стоячая волна. Например, гармоничная волна, распространяясь вправо, достигая конца струны, производит стоячую волну. Волна, что отражается от конца, должна иметь такую же амплитуду и частоту, как и падающая волна.
Рассмотрим падающую и отраженную волны в виде:
где:
Поэтому результирующее уравнение для стоячей волны y будет в виде суммы y1 и y2:
Используя тригонометрические соотношения, это уравнение можно переписать в виде:
Если рассматривать моды и антимоды , то расстояние между соседними модами / антимодами будет равно половине длины волны .
Волновое уравнение
Для того, чтобы получить стоячие волны как результат решения однородного дифференциального волнового уравнения (Даламбера)
необходимо соответствующим образом задать его граничные условия (например, закрепить концы струны).
В общем случае неоднородного дифференциального уравнения
,
где выполняет роль «силы», с помощью которой осуществляется смещение в определенной точке струны, стоячая волна возникает автоматически.
См. также
Примечания
- ↑ Джо Вулфи «Струны, стоячие волны и гармоники»
- ↑ или в активной среде
Ссылки
Стоячая волна на Викискладе? |
---|
- Джо Вулфи «Струны, стоячие волны и гармоники»